EconPapers    
Economics at your fingertips  
 

An Energy Efficient Routing Approach for Cloud-Assisted Green Industrial IoT Networks

Khadak Singh Bhandari and Hwan Cho Gi
Additional contact information
Khadak Singh Bhandari: Division of Computer Science and Engineering, Jeonbuk National University, Jeonju 54896, Korea
Hwan Cho Gi: Division of Computer Science and Engineering, Jeonbuk National University, Jeonju 54896, Korea

Sustainability, 2020, vol. 12, issue 18, 1-25

Abstract: The green industrial Internet of things (IIoT) is emerging as a new paradigm, which envisions the concept of connecting different devices and reducing energy consumption. In multi-hop low power and lossy network, a resource-constrained node should aware of its energy consumption while routing the data packets. As part of IoT, the routing protocol for low power and lossy network (RPL) is considered to be a default routing standard. Recently, RPL has gained a significant maturity, but still, energy optimization is one of the main issues, because the default objective function (OF), which makes routing decision mainly based on a single parameter, such as link quality, and ignores the energy cost. Therefore, this paper aims to consider the concept of green IIoT concerning how a routing approach can achieve energy efficiency in resource-constrained IoT networks. For this, we propose a resource aware and reliable OF (RAROF), which constructs an optimum routing path by exploiting the information regarding the duty cycle, link quality, energy condition, and resource availability of a node. In addition, we propose node vulnerability index (NVI), a new routing metric that identifies the vulnerable nodes in terms of energy. To deal with the diverse data traffic of the IIoT network, we implement a multi-queuing based traffic differentiation approach that ensures the application requirements. The extensive simulation results show that the proposed RAROF can effectively extend the lifetime of the network, enhance the energy efficiency, and achieve higher reliability than that of other OFs. In this way, RAROF makes a routing decision with the purpose of extending network lifetime and minimizing energy depletion, paving the way towards green IIoT.

Keywords: energy efficiency; green IIoT; low power and lossy network; routing protocol; routing metrics; 6LoWPAN; duty cycle (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2071-1050/12/18/7358/pdf (application/pdf)
https://www.mdpi.com/2071-1050/12/18/7358/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:12:y:2020:i:18:p:7358-:d:410435

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jsusta:v:12:y:2020:i:18:p:7358-:d:410435