EconPapers    
Economics at your fingertips  
 

Reviewing Arch-Dams’ Building Risk Reduction Through a Sustainability–Safety Management Approach

Enrico Zacchei and José Luis Molina
Additional contact information
Enrico Zacchei: Itecons—Institute for Research and Technological Development in Construction, Energy, Environment and Sustainability, Pedro Hispano Avenue, 3030-289 Coimbra, Portugal
José Luis Molina: IGA Research Group, Higher Polytechnic School of Ávila, University of Salamanca (USAL), 50 Avenue Hornos Caleros, 05003 Ávila, Spain

Sustainability, 2020, vol. 12, issue 1, 1-21

Abstract: The importance of dams is rapidly increasing due to the impact of climate change on increasing hydrological process variability and on water planning and management need. This study tackles a review for the concrete arch-dams’ design process, from a dual sustainability/safety management approach. Sustainability is evaluated through a design optimization for dams´ stability and deformation analysis; safety is directly related to the reduction and consequences of failure risk. For that, several scenarios about stability and deformation, identifying desirable and undesirable actions, were estimated. More than 100 specific parameters regarding dam-reservoir-foundation-sediments system and their interactions have been collected. Also, a summary of mathematical modelling was made, and more than 100 references were summarized. The following consecutive steps, required to design engineering (why act?), maintenance (when to act) and operations activities (how to act), were evaluated: individuation of hazards, definition of failure potential and estimation of consequences (harm to people, assets and environment). Results are shown in terms of calculated data and relations: the area to model the dam–foundation interaction is around 3.0 H d 2 , the system-damping ratio and vibration period is 8.5% and 0.39 s. Also, maximum elastic and elasto-plastic displacements are ~0.10–0.20 m. The failure probability for stability is 34%, whereas for deformation it is 29%.

Keywords: concrete arch-dams; stability scenarios; deformation scenarios; safety management; sustainability assessment (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2020
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/2071-1050/12/1/392/pdf (application/pdf)
https://www.mdpi.com/2071-1050/12/1/392/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:12:y:2020:i:1:p:392-:d:305009

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jsusta:v:12:y:2020:i:1:p:392-:d:305009