Assessing the Impact of Physical and Anthropogenic Environmental Factors in Determining the Habitat Suitability of Seagrass Ecosystems
Ryan Hastings,
Valerie Cummins and
Paul Holloway
Additional contact information
Ryan Hastings: Department of Geography, University College Cork, Cork T12 K8AF, Ireland
Valerie Cummins: School of Biological, Earth and Environmental Sciences, University College Cork, Cork T23 AX58, Ireland
Paul Holloway: Department of Geography, University College Cork, Cork T12 K8AF, Ireland
Sustainability, 2020, vol. 12, issue 20, 1-17
Abstract:
Blue Carbon ecosystems such as mangroves, saltmarshes and seagrasses have been shown to sequester large amounts of carbon, and subsequently are receiving renewed interest from policy experts in light of climate change. Globally, seagrasses remain the most understudied of these ecosystems, with their total geographic extent largely unknown due to challenges in mapping dynamic coastal environments. As such, species distribution models (SDMs) have been used to identify areas of high suitability, in order to inform our understanding of where unmapped meadows may be located or to identify suitable sites for restoration and/or enhancement efforts. However, many SDMs parameterized to project seagrass distributions focus on physical and not anthropogenic variables (i.e., dredging, aquaculture), which can have negative impacts on seagrass meadows. Here we used verified datasets to identify the potential distribution of Zostera marina and Zostera noltei at a national level for the Republic of Ireland, using 19 environmental variables including both physical and anthropogenic. Using the Maximum Entropy method for developing the SDM, we estimated approximately 95 km 2 of suitable habitat for Z. marina and 70 km 2 for Z. noltei nationally with high accuracy metrics, including Area Under the Curve (AUC) values of 0.939 and 0.931, respectively for the two species. We found that bathymetry, maximum sea-surface temperature (SST) and minimum salinity were the most important environmental variables that explained the distribution of Z. marina and that high standard deviation of SST, mean SST and maximum salinity were the most important variables in explaining the distribution of Z. noltei. At a national level, we noted that it was primarily physical variables that determined the geographic distribution of seagrass, not anthropogenic variables. We unexpectedly modelled areas of high suitability in locations of anthropogenic disturbance (i.e., dredging, high pollution risk), although this may be due to the binary nature of SDMs capturing presence-absence and not the size and condition of the meadows, suggesting a need for future research to explore the finer scale impacts of anthropogenic activity. Subsequently, this research should foster discussion for researchers and practitioners working on sustainability projects related to Blue Carbon.
Keywords: blue carbon; carbon sequestration; ecosystem services; species distribution modelling (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
https://www.mdpi.com/2071-1050/12/20/8302/pdf (application/pdf)
https://www.mdpi.com/2071-1050/12/20/8302/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:12:y:2020:i:20:p:8302-:d:425351
Access Statistics for this article
Sustainability is currently edited by Ms. Alexandra Wu
More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().