EconPapers    
Economics at your fingertips  
 

Summertime Overheating Risk Assessment of a Flexible Plug-In Modular Unit in Luxembourg

Michaël Rakotonjanahary, Frank Scholzen and Daniele Waldmann
Additional contact information
Michaël Rakotonjanahary: Faculty of Science, Technology, and Medicine, Campus Kirchberg, University of Luxembourg, 1359 Luxembourg, Luxembourg
Frank Scholzen: Faculty of Science, Technology, and Medicine, Campus Kirchberg, University of Luxembourg, 1359 Luxembourg, Luxembourg
Daniele Waldmann: Faculty of Science, Technology, and Medicine, Campus Belval, University of Luxembourg, 4365 Esch-sur-Alzette, Luxembourg

Sustainability, 2020, vol. 12, issue 20, 1-20

Abstract: Modular buildings offer faster construction process, provide better construction quality, allow reducing construction waste and are potentially flexible. Frames of modular units can be made of metal, timber, concrete or mixed materials but lightweight structures do not always allow erecting high-rise buildings and generally present a higher risk of overheating and/or overcooling. To reconcile these pros and cons, a typology of modular building called Slab was designed by a group of architects. The building is composed on the one hand of a permanent concrete structure named shelf-structure and on the other hand of several flexible removable timber modular units, also known as modules. The shelf-structure will host the common utility rooms and will serve as docking infrastructure for the housing modules. To provide high flexibility, the Slab building was designed to adapt to any orientation and location in Luxembourg. An energy concept and a HVAC systems design has been developed for the Slab building. Furthermore, a two-fold sustainability analysis was carried out. The first part of the analysis regards the determination of the minimum required wall thicknesses of the modules in accordance with Luxembourgish regulatory requirements, although the current regulation does not yet consider the Slab building typology. The second part, which is the subject of this paper, is thermal comfort assessment, more precisely, summertime overheating risk assessment of these modules, in compliance with Luxembourgish standard. In this regard, dynamic thermal simulations have been realized on two module variants; the first fulfills the passive house requirements, and the second—the current requirements for building permit application, which in principle corresponds to low energy house requirements. Simulations showed that with adequate solar shading and reinforced natural ventilation by window opening, overheating risk could be avoided for the normal residential use scenario for both module variants.

Keywords: plug-in architecture; modular building; flexible container unit; off-site construction; energy performance; dynamic thermal simulation; summertime overheating assessment (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2071-1050/12/20/8474/pdf (application/pdf)
https://www.mdpi.com/2071-1050/12/20/8474/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:12:y:2020:i:20:p:8474-:d:427970

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jsusta:v:12:y:2020:i:20:p:8474-:d:427970