Study of Past and Future Spatiotemporal Patterns and Impact on Electricity Consumption for Sustainable Planning: A Case Study of El Paso, Texas
Joanne M. Moyer and
Adeeba A. Raheem
Additional contact information
Joanne M. Moyer: Civil Engineering Department, University of Texas at El Paso, El Paso, TX 79968, USA
Adeeba A. Raheem: Civil Engineering Department, University of Texas at El Paso, El Paso, TX 79968, USA
Sustainability, 2020, vol. 12, issue 20, 1-23
Abstract:
As cities continue to grow, their urban form continues to evolve. As a consequence of urban growth, the demand for infrastructure increases to meet the needs of a growing population. Understanding this evolution and its subsequent impingement on resources allows for planners, engineers, and decision-makers to plan for a sustainable community. Patterns and rate of urban expansion have been studied extensively in various cities throughout the United States (U.S.), utilizing remote sensing and geographic information system (GIS). However, minimal research has been conducted to understand urban growth rates and patterns for cities that possess borders, geological attributes, and/or protected areas that confine and direct the cities’ urban growth, such as El Paso, Texas. This study utilizes El Paso, Texas, as a case study to provide a basis for examining growth patterns and their possible impact on the electricity consumption resource, which lies on the U.S./Mexico and New Mexico borders, contains the largest urban park in the nation (Franklin Mountains State Park), and Ft. Bliss military base. This study conducted a change analysis for El Paso County to analyze specific areas of concentrated growth within the past 15-years (2001–2016). The results indicate that county growth has primarily occurred within the city of El Paso, in particular, Districts 5 (east side), 1 (west side), and 4 (northeast), with District 5 experiencing substantial growth. As the districts expanded, fragmentation and shape irregularity of developed areas decreased. Utilizing past growth trends, the counties’ 2031 land-use was predicted employing the Cellular Automata (CA)-Markov method. The counties’ projected growth was evenly distributed within El Paso city and outside city limits. Future growth within the city continues to be directed within the same districts that experienced past growth, Districts 1, 4, and 5. Whereas projected growth occurring outside the city limits, primarily focused within potential city annexation areas in accordance with the cities’ comprehensive plan, Plan El Paso. Panel data analysis was performed to investigate the relationship between urban dynamic growth patterns and electricity consumption. The findings suggest that, as urban areas expanded and fragmentation decreased, electricity consumption increased. Further investigation to include an expansion of urban pattern metrics, an extension of the time period studied, and their influence on electricity consumption is recommended. The results of this study provided a basis for decision-makers and planners with an understanding of El Paso’s concentrated areas of past and projected urban growth patterns and their influence on electricity consumption to mitigate possible fragmentation growth through informed decisions and policies to provide a sustainable environment for the community.
Keywords: sustainability; city growth; CA-Markov; energy consumption; landscape metrics; National Land Cover Database (NLCD) (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.mdpi.com/2071-1050/12/20/8480/pdf (application/pdf)
https://www.mdpi.com/2071-1050/12/20/8480/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:12:y:2020:i:20:p:8480-:d:428069
Access Statistics for this article
Sustainability is currently edited by Ms. Alexandra Wu
More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().