EconPapers    
Economics at your fingertips  
 

Efficient Operation of the Hybrid Power System Using an Optimal Fueling Strategy and Control of the Fuel Cell Power Based on the Required Power Tracking Algorithm

Nicu Bizon, Phatiphat Thounthong and Damien Guilbert
Additional contact information
Nicu Bizon: Faculty of Electronics, Communication and Computers, University of Pitesti, 110040 Pitesti, Romania
Phatiphat Thounthong: Renewable Energy Research Centre (RERC), Department of Teacher Training in Electrical Engineering, Faculty of Technical Education, King Mongkut’s University of Technology North Bangkok, 1518, Pracharat 1 Road, Bangsue, Bangkok 10800, Thailand
Damien Guilbert: Groupe de Recherche en Energie Electrique de Nancy (GREEN), Université de Lorraine, GREEN, F-54000 Nancy, France

Sustainability, 2020, vol. 12, issue 22, 1-26

Abstract: In this paper, four fuel economy strategies using power tracking control of the fuel cell boost converter and fuel cell optimization through the control of the fueling regulators were analyzed. The performance and safe operation in conditions of load disturbances and variations of renewable energy were considered. A benchmark strategy was used as a well-known strategy, which was based on the static feed-forward control of the fueling regulators. One of the four strategies is new and was based on switching the optimization reference to air and fuel regulators based on a threshold of the required power from the fuel cell system. The advantages of using the power tracking control and the optimization based on two variables instead of one are highlighted in sizing the battery capacity and its lifetime, and obtaining fuel economy respectively. The percentages of fuel economy for the analyzed strategies compared to the reference strategy are between 2.83% and 4.36%, and between 7.69% and 12.94%, in the case of a dynamic load cycle with an average of 5 kW and 2.5 kW, respectively.

Keywords: hybrid power system; nano-grid; fuel cell; fuel economy; power tracking; optimization (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/2071-1050/12/22/9690/pdf (application/pdf)
https://www.mdpi.com/2071-1050/12/22/9690/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:12:y:2020:i:22:p:9690-:d:448283

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jsusta:v:12:y:2020:i:22:p:9690-:d:448283