EconPapers    
Economics at your fingertips  
 

Using a DEA–AutoML Approach to Track SDG Achievements

Bodin Singpai and Desheng Wu
Additional contact information
Bodin Singpai: School of Economics and Management, University of Chinese Academy of Sciences, Beijing 100049, China

Sustainability, 2020, vol. 12, issue 23, 1-26

Abstract: Each country needs to monitor progress on their Sustainable Development Goals (SDGs) to develop strategies that meet the expectations of the United Nations. Data envelope analysis (DEA) can help identify best practices for SDGs by setting goals to compete against. Automated machine learning (AutoML) simplifies machine learning for researchers who need less time and manpower to predict future situations. This work introduces an integrative method that integrates DEA and AutoML to assess and predict performance in SDGs. There are two experiments with different data properties in their interval and correlation to demonstrate the approach. Three prediction targets are set to measure performance in the regression, classification, and multi-target regression algorithms. The back-propagation neural network (BPNN) is used to validate the outputs of the AutoML. As a result, AutoML can outperform BPNN for regression and classification prediction problems. Low standard deviation (SD) data result in poor prediction performance for the BPNN, but does not have a significant impact on AutoML. Highly correlated data result in a higher accuracy, but does not significantly affect the R-squared values between the actual and predicted values. This integrative approach can accurately predict the projected outputs, which can be used as national goals to transform an inefficient country into an efficient country.

Keywords: automated machine learning (AutoML); Belt and Road Initiative (BRI); coronavirus disease (COVID-19); data envelopment analysis (DEA); Sustainable Development Goals (SDGs) (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/2071-1050/12/23/10124/pdf (application/pdf)
https://www.mdpi.com/2071-1050/12/23/10124/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:12:y:2020:i:23:p:10124-:d:456682

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jsusta:v:12:y:2020:i:23:p:10124-:d:456682