EconPapers    
Economics at your fingertips  
 

Optimizing the Rail Profile for High-Speed Railways Based on Artificial Neural Network and Genetic Algorithm Coupled Method

Hanwen Jiang and Liang Gao
Additional contact information
Hanwen Jiang: School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, China
Liang Gao: School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, China

Sustainability, 2020, vol. 12, issue 2, 1-23

Abstract: Though the high-speed railways are seen as a sustainable form of transportation, the fact that the rail wear in high-speed railways negatively affects the running safety and riding comfort, as well as the maintenance of railways, has drawn a wide range of concerns among researchers and scholars. In order to reduce the rail wear and achieve the goal of sustainable transportation, this paper proposes an ingenious optimization program of rail profiles based on the artificial neural network (ANN) and genetic algorithm (GA) coupled method. The candidate solutions of the nonlinear GA programming model are regarded as the inputs of the trained ANN model. Meanwhile, the outputs of the trained ANN model serve as the objective functions of the GA model. The computational results show that the optimized rail profile not only has superior performances in terms of the wheel/rail wear and contact conditions, but also maintains good dynamic performances. Therefore, this study can provide the theoretical and practical basis for the design and the preventive grinding of rails in the high-speed railways. Also, the ANN-GA coupled model can be extended and further employed on the optimization of other rail profiles.

Keywords: artificial neural network; dynamic performance; genetic algorithm; high-speed railway; rail profile optimization; rail wear (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/2071-1050/12/2/658/pdf (application/pdf)
https://www.mdpi.com/2071-1050/12/2/658/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:12:y:2020:i:2:p:658-:d:309457

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jsusta:v:12:y:2020:i:2:p:658-:d:309457