EconPapers    
Economics at your fingertips  
 

Detecting DDoS Attacks in Software-Defined Networks Through Feature Selection Methods and Machine Learning Models

Huseyin Polat, Onur Polat and Aydin Cetin
Additional contact information
Huseyin Polat: Faculty of Technology, Gazi University, Ankara 06500, Turkey
Onur Polat: Faculty of Technology, Gazi University, Ankara 06500, Turkey
Aydin Cetin: Faculty of Technology, Gazi University, Ankara 06500, Turkey

Sustainability, 2020, vol. 12, issue 3, 1-16

Abstract: Software Defined Networking (SDN) offers several advantages such as manageability, scaling, and improved performance. However, SDN involves specific security problems, especially if its controller is defenseless against Distributed Denial of Service (DDoS) attacks. The process and communication capacity of the controller is overloaded when DDoS attacks occur against the SDN controller. Consequently, as a result of the unnecessary flow produced by the controller for the attack packets, the capacity of the switch flow table becomes full, leading the network performance to decline to a critical threshold. In this study, DDoS attacks in SDN were detected using machine learning-based models. First, specific features were obtained from SDN for the dataset in normal conditions and under DDoS attack traffic. Then, a new dataset was created using feature selection methods on the existing dataset. Feature selection methods were preferred to simplify the models, facilitate their interpretation, and provide a shorter training time. Both datasets, created with and without feature selection methods, were trained and tested with Support Vector Machine (SVM), Naive Bayes (NB), Artificial Neural Network (ANN), and K-Nearest Neighbors (KNN) classification models. The test results showed that the use of the wrapper feature selection with a KNN classifier achieved the highest accuracy rate (98.3%) in DDoS attack detection. The results suggest that machine learning and feature selection algorithms can achieve better results in the detection of DDoS attacks in SDN with promising reductions in processing loads and times.

Keywords: SDN; AI algorithms; feature selection; DDoS attacks (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2020
References: View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
https://www.mdpi.com/2071-1050/12/3/1035/pdf (application/pdf)
https://www.mdpi.com/2071-1050/12/3/1035/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:12:y:2020:i:3:p:1035-:d:315107

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jsusta:v:12:y:2020:i:3:p:1035-:d:315107