EconPapers    
Economics at your fingertips  
 

Scenarios of Sustainable Fishing in the Zapatosa Marsh (Colombia) Simulated with a System Dynamics Model

Andres Camilo Castaño-Barreto, Carlos Alberto Jaramillo-Cruz, Raul Andres Molina Benavides and Alberto Stanislao Atzori
Additional contact information
Andres Camilo Castaño-Barreto: Grupo de investigación “ICTIAP” Ciencia, tecnología e Innovación en Acuicultura y Pesca, Facultad de Ciencias Agropecuarias, Universidad Nacional de Colombia, Palmira 763537, Colombia
Carlos Alberto Jaramillo-Cruz: Grupo de investigación “ICTIAP” Ciencia, tecnología e Innovación en Acuicultura y Pesca, Facultad de Ciencias Agropecuarias, Universidad Nacional de Colombia, Palmira 763537, Colombia
Raul Andres Molina Benavides: Grupo de investigación “Conservación, Mejoramiento y Utilización del Ganado Criollo Hartón del Valle y otros Recursos Genéticos Animales en el Sur-Occidente colombiano”, Universidad Nacional de Colombia, Palmira 763531, Colombia
Alberto Stanislao Atzori: Section of Animal Science, Department of Agriculture, Università degli Studi di Sassari, 07100 Sassari, Italy

Sustainability, 2020, vol. 12, issue 8, 1-22

Abstract: The Zapatosa marsh ( ciénaga de la Zapatosa ) is located in the Department of Cesar in Colombia. In 2018, the muddy complex of Zapatosa was declared a Ramsar wetland, for this reason, it is necessary to develop management strategies for the marsh that allow not only the conservation of the ecosystem. The objective of this work is to use System Dynamics as an evaluation tool for three possible management scenarios of artisanal fishing in the Zapatosa marsh. A qualitative causal diagram and a quantitative Stock and Flow diagrams were designed to describe the dynamics of fish and fishermen populations in the marsh. The initial model setting and parametrization derived from values gathered from different sources of information. The calibration of the model was carried out with reference data on total catch of kilograms of fish and population data from the Department of Cesar. The data obtained through the “Aquaculture and artisanal fisheries survey of the Department of El Cesar” in 2018 were reproduced in the model and then compared with 3 alternative management scenarios. Scenario 1 included strictly applying of the fishing stopover for the species Prochilodus magdalenae and for catfish ( Pseudoplatystoma magdaleniatum, Pimelodus blochii y Sorubim cuspicaudus) . Scenario 2 considered to apply the same prohibitions, but with a payment to fishermen for the care of the swamp at the time of prohibition. In Scenario 3 the fishermen under fishing stop will receive an income of a legal Colombian minimum monthly salary and will be engaged in practices of ecosystem services. Results showed that in some scenarios the economic situation of the fishermen is unable to meet the monthly family expenses in different periods of the year. On the other hand, there is greater economic stability and fish populations when adopting Scenario 3, but it is difficult to achieve in the short or medium term. Scenario 2 shows little recoveries in fish populations and a higher money availability to the local community than in Scenario 3, in certain months, presenting the best short-term management option. The presented model encourages further simulation scenarios of the Zapatosa Marsh.

Keywords: ramsar wetland; fisheries management; simulation modeling (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2071-1050/12/8/3458/pdf (application/pdf)
https://www.mdpi.com/2071-1050/12/8/3458/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:12:y:2020:i:8:p:3458-:d:349583

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jsusta:v:12:y:2020:i:8:p:3458-:d:349583