EconPapers    
Economics at your fingertips  
 

The Effect of Vehicle and Road Conditions on Rollover of Commercial Heavy Vehicles during Cornering: A Simulation Approach

Nurzaki Ikhsan, Ahmad Saifizul and Rahizar Ramli
Additional contact information
Nurzaki Ikhsan: Mechanical Engineering Department, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia
Ahmad Saifizul: Mechanical Engineering Department, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia
Rahizar Ramli: Mechanical Engineering Department, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia

Sustainability, 2021, vol. 13, issue 11, 1-20

Abstract: Heavy vehicles make up a relatively small percentage of traffic volume on Malaysian roads compared to other vehicle types. However, heavy vehicles have been reported to be involved in 30,000–40,000 accidents yearly and caused significantly more fatalities. Rollover accidents may also incur cargo damages and cause environmental or human disasters for vehicles that carry hazardous cargos if these contents are spilled. Thus, in this paper, a comprehensive study was conducted to investigate the effects of vehicle and road conditions on rollover of commercial heavy vehicles during cornering at curved road sections. Vehicle conditions include the heavy vehicle class (based on the axle number and vehicle type), speed and gross vehicle weight, while road conditions include the cornering radius and coefficient of friction values. In order to reduce the risks involved in usage of actual heavy vehicles in crash experiments, a simulation approach using a multi-body vehicle dynamic software was applied in this study, where the verified virtual heavy vehicle model was simulated and the output results were extracted and analyzed. The results showed that a maximum of 40% and a minimum of 23% from the total number of simulations resulted in an unsafe condition (indicated as failed) during the simulations. From the unsafe conditions, two types of rollover accidents could be identified, which were un-tripped and tripped rollovers. The heavy vehicle speed was also found to have a strong correlation to the lateral acceleration (to cause a rollover), followed by gross vehicle weight, coefficient of friction and cornering radius, respectively.

Keywords: rollover; heavy vehicle; single unit truck; single truck-trailer; lateral acceleration (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/2071-1050/13/11/6337/pdf (application/pdf)
https://www.mdpi.com/2071-1050/13/11/6337/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:13:y:2021:i:11:p:6337-:d:568136

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jsusta:v:13:y:2021:i:11:p:6337-:d:568136