EconPapers    
Economics at your fingertips  
 

Nonintrusive Residential Electricity Load Decomposition Based on Transfer Learning

Mingzhi Yang, Yue Liu and Quanlong Liu
Additional contact information
Mingzhi Yang: School of Economics and Management, China University of Mining and Technology, Xuzhou 221116, China
Yue Liu: School of Economics and Management, China University of Mining and Technology, Xuzhou 221116, China
Quanlong Liu: School of Economics and Management, China University of Mining and Technology, Xuzhou 221116, China

Sustainability, 2021, vol. 13, issue 12, 1-11

Abstract: Monitoring electricity consumption in residential buildings is an important way to help reduce energy usage. Nonintrusive load monitoring is a technique to separate the total electrical load of a single household into specific appliance loads. This problem is difficult because we aim to extract the energy consumption of each appliance by only using the total electrical load. Deep transfer learning is expected to solve this problem. This paper proposes a deep neural network model based on an attention mechanism. This model improves the traditional sequence-to-sequence model with a time-embedding layer and an attention layer so that it can be better applied in nonintrusive load monitoring. In particular, the improved model abandons the recurrent neural network structure and shortens the training time, which means it is more appropriate for use in model pretraining with large datasets. To verify the validity of the model, we selected three open datasets and compared them with the current leading model. The results show that transfer learning can effectively improve the prediction ability of the model, and the model proposed in this study has a better performance than the most advanced available model.

Keywords: smart grid; nonintrusive load monitoring; transfer learning (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/2071-1050/13/12/6546/pdf (application/pdf)
https://www.mdpi.com/2071-1050/13/12/6546/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:13:y:2021:i:12:p:6546-:d:571144

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jsusta:v:13:y:2021:i:12:p:6546-:d:571144