Machine Learning Based Short-Term Travel Time Prediction: Numerical Results and Comparative Analyses
Bo Qiu and
Wei (David) Fan
Additional contact information
Bo Qiu: USDOT Center for Advanced Multimodal Mobility Solutions and Education (CAMMSE), Department of Civil and Environmental Engineering, University of North Carolina at Charlotte, EPIC Building, Room 3261, 9201 University City Boulevard, Charlotte, NC 28223-0001, USA
Wei (David) Fan: USDOT Center for Advanced Multimodal Mobility Solutions and Education (CAMMSE), Department of Civil and Environmental Engineering, University of North Carolina at Charlotte, EPIC Building, Room 3261, 9201 University City Boulevard, Charlotte, NC 28223-0001, USA
Sustainability, 2021, vol. 13, issue 13, 1-19
Abstract:
Due to the increasing traffic volume in metropolitan areas, short-term travel time prediction (TTP) can be an important and useful tool for both travelers and traffic management. Accurate and reliable short-term travel time prediction can greatly help vehicle routing and congestion mitigation. One of the most challenging tasks in TTP is developing and selecting the most appropriate prediction algorithm using the available data. In this study, the travel time data was provided and collected from the Regional Integrated Transportation Information System (RITIS). Then, the travel times were predicted for short horizons (ranging from 15 to 60 min) on the selected freeway corridors by applying four different machine learning algorithms, which are Decision Trees (DT), Random Forest (RF), Extreme Gradient Boosting (XGBoost), and Long Short-Term Memory neural network (LSTM). Many spatial and temporal characteristics that may affect travel time were used when developing the models. The performance of prediction accuracy and reliability are compared. Numerical results suggest that RF can achieve a better prediction performance result than any of the other methods not only in accuracy but also with stability.
Keywords: travel time prediction; machine learning; probe vehicle data; decision tree; random forest; XGBoost; LSTM (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.mdpi.com/2071-1050/13/13/7454/pdf (application/pdf)
https://www.mdpi.com/2071-1050/13/13/7454/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:13:y:2021:i:13:p:7454-:d:587978
Access Statistics for this article
Sustainability is currently edited by Ms. Alexandra Wu
More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().