The Role of Embodied Carbon Databases in the Accuracy of Life Cycle Assessment (LCA) Calculations for the Embodied Carbon of Buildings
Golnaz Mohebbi,
Ali Bahadori-Jahromi,
Marco Ferri and
Anastasia Mylona
Additional contact information
Golnaz Mohebbi: Department of Civil Engineering and Built Environment, School of Computing and Engineering, University of West London, London W5 5RF, UK
Ali Bahadori-Jahromi: Department of Civil Engineering and Built Environment, School of Computing and Engineering, University of West London, London W5 5RF, UK
Marco Ferri: Lidl Great Britain Ltd., 19 Worple Road, London SW19 4JS, UK
Anastasia Mylona: Research Department, The Chartered Institution of Building Services Engineers [CIBSE], London SW12 9BS, UK
Sustainability, 2021, vol. 13, issue 14, 1-22
Abstract:
Studies conducted by major national and international scientific bodies have indisputably concluded that the increase in anthropogenic greenhouse gas emissions (GHG) since the mid-20th century has led to irreversible changes in the climate. Data has shown that the contribution of the building sector accounts for 39% of these emissions. Reducing GHG emissions associated with the construction phase of buildings, or embodied carbon (EC), will prevent GHG emissions from entering the atmosphere earlier, reducing the negative impacts. However, to achieve any meaningful reduction, there is a need for consistency and accuracy in the calculations. The accuracy of these calculations is primarily tied to the accuracy of embodied carbon factors (ECF) used in the calculations, values determining the environmental impact of a product or procedure per unit weight. The emissions of any product can be calculated by performing a Life Cycle Assessment (LCA). While the requirements for carrying out an LCA have been standardised in ISO14044, the lack of a definitive national ECF database in the UK means that EC calculations can vary drastically based on the chosen database. An LCA has been carried out on a standard Lidl supermarket design within the A1–A3 boundary. For the calculation, the ECFs were sourced from two different databases, using the GHG conversion factor data published in 2020 by the UK Department of Energy & Climate Change and data published in 2019 by the Inventory of Carbon and Energy (ICE). The latter is currently accepted as the most consistent database for carbon factors in the UK. This study showed that using a more detailed database compared to using a more general database could result in a 35.2% reduction of embodied carbon, while using more detailed data from a single database can reduce it by a further 5.5%. It is necessary to establish the most accurate baseline for embodied carbon so that any carbon reduction attempts can be as effective as possible.
Keywords: embodied carbon; LCA; embodied carbon factor; EC; ECF; BIM (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
https://www.mdpi.com/2071-1050/13/14/7988/pdf (application/pdf)
https://www.mdpi.com/2071-1050/13/14/7988/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:13:y:2021:i:14:p:7988-:d:596013
Access Statistics for this article
Sustainability is currently edited by Ms. Alexandra Wu
More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().