Thermal Energy Performance Simulation of a Residential Building Retrofitted with Passive Design Strategies: A Case Study in Mexico
Ana Paola Vargas and
Leon Hamui
Additional contact information
Ana Paola Vargas: Facultad de Ingeniería, Universidad Anáhuac México, Avenida Universidad Anáhuac 46, Col. Lomas Anáhuac, Huixquilucan 52786, Estado de México, Mexico
Leon Hamui: Facultad de Ingeniería, Universidad Anáhuac México, Avenida Universidad Anáhuac 46, Col. Lomas Anáhuac, Huixquilucan 52786, Estado de México, Mexico
Sustainability, 2021, vol. 13, issue 14, 1-21
Abstract:
High energy consumption as a result of an inefficient design has both economic and environmental repercussions throughout the life cycle of a building. In Mexico, the residential sector is the third-largest final energy consumer, therefore improving the performance of existing buildings is considered an effective method in achieving energy savings. Moreover, in Mexico warm climate regions predominate, which impacts energy consumption. This article examines a linked, single-family house located in the hot-humid climate city of Villahermosa, Tabasco (México). DesignBuilder software was used to conduct the thermal energy performance simulation of the existing building (base case) and to evaluate the energy-saving potentials by implementing different passive design strategies. As a result, the annual electricity consumption of the base case decreased a maximum of 2.0% with the passive design strategy in exterior windows, 4.9% in walls and, 13.7% reduction in roofs, the latter being the enclosure with the greatest reduction achieved. Nevertheless, a final adaptation proposal with the passive design strategies, whose results represented the highest energy savings, accomplished a total reduction of 23.5% with a payback period of 5.8 years.
Keywords: passive design strategies; hot-humid climate; thermal energy performance simulation; energy efficiency (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
https://www.mdpi.com/2071-1050/13/14/8064/pdf (application/pdf)
https://www.mdpi.com/2071-1050/13/14/8064/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:13:y:2021:i:14:p:8064-:d:597273
Access Statistics for this article
Sustainability is currently edited by Ms. Alexandra Wu
More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().