LED versus HPS Lighting: Effects on Water and Energy Consumption and Yield Quality in Lettuce Greenhouse Production
Dennis Dannehl,
Thomas Schwend,
Daniel Veit and
Uwe Schmidt
Additional contact information
Dennis Dannehl: Division Biosystems Engineering, Faculty of Life Sciences, Albrecht Daniel Thaer-Institute of Agricultural and Horticultural Sciences, Humboldt-Universität zu Berlin, Albrecht-Thaer-Weg 3, D-14195 Berlin, Germany
Thomas Schwend: Division Biosystems Engineering, Faculty of Life Sciences, Albrecht Daniel Thaer-Institute of Agricultural and Horticultural Sciences, Humboldt-Universität zu Berlin, Albrecht-Thaer-Weg 3, D-14195 Berlin, Germany
Daniel Veit: Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745 Jena, Germany
Uwe Schmidt: Division Biosystems Engineering, Faculty of Life Sciences, Albrecht Daniel Thaer-Institute of Agricultural and Horticultural Sciences, Humboldt-Universität zu Berlin, Albrecht-Thaer-Weg 3, D-14195 Berlin, Germany
Sustainability, 2021, vol. 13, issue 15, 1-11
Abstract:
High-pressure sodium (HPS) lighting is increasingly replaced by LED lighting in lettuce greenhouse cultivation. In contrast to HPS lighting, LEDs do not heat radiation. Therefore, the leaf temperature is significantly lower under LEDs. This raises the question of whether LED lighting has a positive impact on the reduction in water consumption during lettuce production. In this paper, we investigated this question and found that the water consumption of lettuce produced under LEDs was significantly lower (−15%) than under HPS without loss of yield. We also found that supplementary lighting increases the concentrations of caffeoylquinic acid, dicaffeoyltartaric acid, dicaffeoylquinic acid and that of the total phenolic compounds in lettuce leaves by 61%, 39%, 163% and 38%, respectively. Only the LED fixture was also efficient enough to increase the concentration of caffeoyltartaric acid (+24%). Most of the phenolic compounds showed a very strong positive correlation with the chlorophyll concentration in lettuce, which predominated in the leaves exposed to the LED lighting. Based on these facts, we conclude that by optimizing the light composition, more sustainable plant production, higher concentrations of chlorophyll and some phenolic compounds are possible.
Keywords: LED lighting; lettuce; supplementary lighting; continuous PAR spectrum; phenolic acids; flavonoids; chlorophyll; water use efficiency (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2071-1050/13/15/8651/pdf (application/pdf)
https://www.mdpi.com/2071-1050/13/15/8651/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:13:y:2021:i:15:p:8651-:d:607539
Access Statistics for this article
Sustainability is currently edited by Ms. Alexandra Wu
More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().