EconPapers    
Economics at your fingertips  
 

A Centralized Power Flow Control Scheme of EV-Connected DC Microgrid to Satisfy Multi-Objective Problems under Several Constraints

Faris Adnan Padhilah and Kyeong-Hwa Kim
Additional contact information
Faris Adnan Padhilah: Department of Electrical and Information Engineering, Seoul National University of Science and Technology, Seoul 01811, Korea
Kyeong-Hwa Kim: Department of Electrical and Information Engineering, Seoul National University of Science and Technology, Seoul 01811, Korea

Sustainability, 2021, vol. 13, issue 16, 1-37

Abstract: Integrating electric vehicles (EVs) into a microgrid improves the efficiency, flexibility, and robustness of microgrids. Unfortunately, the uncertainties of EVs, in terms of their connection/disconnection times and their initial SOC values, make integrating EVs into microgrids a more challenging issue. Contrary to the standard energy management system (EMS), integrating EVs into microgrids raises several multi-objective problems that need to be solved. In this study, a centralized power flow control scheme for an EV-connected DC microgrid (DCMG) is proposed to satisfy these multi-objective problems under several constraints. Two prime objective functions of the DCMG are presented to demonstrate the benefits to both the DCMG system and EV owners. Then, a reliable and optimized DCMG system is constructed to satisfy the selected prime objective function. The operating modes of each agent in the DCMG are defined based on information regarding the EV connection/disconnection status, the initial EV SOC values, the generation power of the wind power agent, the battery SOC levels, and the grid availability. The effectiveness and robustness of the proposed scheme have been validated by in-depth simulations and experimental tests under the uncertainties of DG power, grid availability, electricity price conditions, and EV connections. In addition, the proposed scheme reliably regulates the DC-link voltage without severe transience, even if these uncertainties cause the task of controlling the DC-link voltage to be transferred from one agent to another.

Keywords: centralized control; constraint of electricity price; DC microgrid; EV-connected microgrid; multi-objective problems; power flow control scheme (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://www.mdpi.com/2071-1050/13/16/8863/pdf (application/pdf)
https://www.mdpi.com/2071-1050/13/16/8863/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:13:y:2021:i:16:p:8863-:d:610585

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jsusta:v:13:y:2021:i:16:p:8863-:d:610585