EconPapers    
Economics at your fingertips  
 

Collective Driving to Mitigate Climate Change: Collective-Adaptive Cruise Control

Saeed Vasebi and Yeganeh M. Hayeri
Additional contact information
Saeed Vasebi: School of Systems and Enterprises, Stevens Institute of Technology, Hoboken, NJ 07030, USA
Yeganeh M. Hayeri: School of Systems and Enterprises, Stevens Institute of Technology, Hoboken, NJ 07030, USA

Sustainability, 2021, vol. 13, issue 16, 1-30

Abstract: The transportation sector is the largest producer of greenhouse gas (GHG) emissions in the United States. Energy-optimal algorithms are proposed to reduce the transportation sector’s fuel consumption and emissions. These algorithms optimize vehicles’ speed to lower energy consumption and emissions. However, recent studies argued that these algorithms could negatively impact traffic flow, create traffic congestions, and increase fuel consumption on the network-level. To overcome this problem, we propose a collective-energy-optimal adaptive cruise control (collective-ACC). Collective-ACC reduces fuel consumption and emissions by directly optimizing vehicles’ trajectories and indirectly by improving traffic flow. Collective-ACC is a bi-objective non-linear integer optimization. This optimization was solved by the Non-dominated Sorting Genetic Algorithm (NSGA-II). Collective-ACC was compared with manual driving and self-centered adaptive cruise control (i.e., conventional energy-optimal adaptive cruise controls (self-centered-ACC)) in a traffic simulation. We found that collective-ACC reduced fuel consumption by up to 49% and 42% compared with manual driving and self-centered-ACC, respectively. Collective-ACC also lowered CO 2 , CO, NO X , and PM X by up to 54%, 70%, 58%, and 64% from manual driving, respectively. Game theory analyses were conducted to investigate how adopting collective-ACC could impact automakers, consumers, and government agencies. We propose policy and business recommendations to accelerate adopting collective-ACC and maximize its environmental benefits.

Keywords: automated vehicle; environmental policy; energy-optimal driving; sustainable development; adaptive cruise control (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/2071-1050/13/16/8943/pdf (application/pdf)
https://www.mdpi.com/2071-1050/13/16/8943/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:13:y:2021:i:16:p:8943-:d:611666

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jsusta:v:13:y:2021:i:16:p:8943-:d:611666