EconPapers    
Economics at your fingertips  
 

A Secure, Lightweight, and Anonymous User Authentication Protocol for IoT Environments

Seunghwan Son, Yohan Park and Youngho Park
Additional contact information
Seunghwan Son: School of Electronic and Electrical Engineering, Kyungpook National University, Daegu 41566, Korea
Yohan Park: School of Computer Engineering, Keimyung University, Daegu 42601, Korea
Youngho Park: School of Electronic and Electrical Engineering, Kyungpook National University, Daegu 41566, Korea

Sustainability, 2021, vol. 13, issue 16, 1-21

Abstract: The Internet of Things (IoT) is being applied to various environments such as telecare systems, smart homes, and intelligent transportation systems. The information generated from IoT devices is stored at remote servers, and external users authenticate to the server for requesting access to the stored data. In IoT environments, the authentication process is required to be conducted efficiently, and should be secure against various attacks and ensure user anonymity and untraceability to ensure sustainability of the network. However, many existing protocols proposed in IoT environments do not meet these requirements. Recently, Rajaram et al. proposed a paring-based user authentication scheme. We found that the Rajaram et al. scheme is vulnerable to various attacks such as offline password guessing, impersonation, privileged insider, and known session-specific temporary information attacks. Additionally, as their scheme uses bilinear pairing, it requires high computation and communication costs. In this study, we propose a novel authentication scheme that resolves these security problems. The proposed scheme uses only hash and exclusive-or operations to be applicable in IoT environments. We analyze the proposed protocol using informal analysis and formal analysis methods such as the BAN logic, real-or-random (ROR) model, and the AVISPA simulation, and we show that the proposed protocol has better security and performance compared with existing authentication protocols. Consequently, the proposed protocol is sustainable and suitable for real IoT environments.

Keywords: mutual authentication; key agreement; lightweight; anonymity; IoT environment; BAN logic; ROR model; AVISPA simulation (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/2071-1050/13/16/9241/pdf (application/pdf)
https://www.mdpi.com/2071-1050/13/16/9241/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:13:y:2021:i:16:p:9241-:d:616320

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jsusta:v:13:y:2021:i:16:p:9241-:d:616320