EconPapers    
Economics at your fingertips  
 

Simulating Grassland Carbon Dynamics in Gansu for the Past Fifty (50) Years (1968–2018) Using the Century Model

Meiling Zhang, Stephen Nazieh, Teddy Nkrumah and Xingyu Wang
Additional contact information
Meiling Zhang: Applied Statistics, College of Science, Gansu Agricultural University, Lanzhou 730070, China
Stephen Nazieh: Applied Statistics, College of Science, Gansu Agricultural University, Lanzhou 730070, China
Teddy Nkrumah: Applied Statistics, College of Science, Gansu Agricultural University, Lanzhou 730070, China
Xingyu Wang: Applied Statistics, College of Science, Gansu Agricultural University, Lanzhou 730070, China

Sustainability, 2021, vol. 13, issue 16, 1-20

Abstract: China is one of the countries most impacted by desertification, with Gansu Province in the northwest being one of the most affected areas. Efforts have been made in recent decades to restore the natural vegetation, while also producing food. This has implications for the soil carbon sequestration and, as a result, the country’s carbon budget. Studies of carbon (C) dynamics in this region would help to understand the effect of management practices on soil organic carbon (SOC) as well as aboveground biomass (ABVG), and to aid informed decision-making and policy implementation to alleviate the rate of global warming. It would also help to understand the region’s contribution to the national C inventory of China. The CENTURY model, a process-based model that is capable of simulating C dynamics over a long period, has not been calibrated to suit Gansu Province, despite being an effective model for soil C estimation. Using the soil and grassland maps of Gansu, together with weather, soil, and reliable historical data on management practices in the province, we calibrated the CENTURY model for the province’s grasslands. The calibrated model was then used to simulate the C dynamics between 1968 and 2018. The results show that the model is capable of simulating C with significant accuracy. Our measured and observed SOC density (SOCD) and ABVG had correlation coefficients of 0.76 and 0.50, respectively, at p < 0.01. Precipitation correlated with SOCD and ABVG with correlation coefficients of 0.57 and 0.89, respectively, at p < 0.01. The total SOC storage (SOCS) was 436.098 × 10 6 t C (approximately 0.4356% of the national average) and the average SOCD was 15.75 t C/ha. There was a high ABVG in the southeast and it decreased towards the northwest. The same phenomenon was observed in the spatial distribution of SOCD. Among the soils studied, Hostosols had the highest SOC sequestration rate (25.6 t C/ha) with Gypsisols having the least (7.8 t C/ha). Between 1968 and 2018, the soil carbon stock gradually increased, with the southeast experiencing the greatest increase.

Keywords: century model; soil organic carbon; gypsisols; hostosols; grasslands (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2071-1050/13/16/9434/pdf (application/pdf)
https://www.mdpi.com/2071-1050/13/16/9434/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:13:y:2021:i:16:p:9434-:d:619638

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jsusta:v:13:y:2021:i:16:p:9434-:d:619638