EconPapers    
Economics at your fingertips  
 

Simulation Studies to Quantify the Impact of Demand Side Management on Environmental Footprint

Sulaiman A. Almohaimeed, Siddharth Suryanarayanan and Peter O’Neill
Additional contact information
Sulaiman A. Almohaimeed: Department of Electrical Engineering, College of Engineering, Qassim University, Unaizah 56452, Saudi Arabia
Siddharth Suryanarayanan: Department of Electrical Engineering & Computer Science, South Dakota State University, Brookings, SD 57007, USA
Peter O’Neill: Retired Electrical Engineer, Fort Collins, CO 80523, USA

Sustainability, 2021, vol. 13, issue 17, 1-24

Abstract: The increased use of energy leads to increased energy-related emissions. Demand side management (DSM) is a potential means of mitigating these emissions from electric utility generating units. DSM can significantly reduce emissions and provide economic and reliability benefits. This work presents some DSM techniques, such as load shifting, energy conservation, and valley filling. Furthermore, this work explains the most common DSM programs. To quantify the effect of DSM in diminishing carbon footprint, this paper performs power flow analysis on a yearly load profile corresponding to Fort Collins, Colorado, U.S. This work used the IEEE 13-node test system to simulate several scenarios from the multi-criteria decision-making (MCDM) alternatives, both individually and integrated. For the base case, emissions decrease by 16% from the 2005 level. The “energy conservation” option achieved a 20% reduction in emissions, integrating both alternatives increased the emissions mitigation up to 22%. Simulation of the residential sector shows the “communication and intelligence” option reduces emissions about 14% from the 2005 level. A scenario that combines “electric stationary storage” with “communication and intelligence” diminishes the emissions by more than 15%. The last scenario examined all MCDM alternatives combined into one option, resulting in a 20% emissions reduction. We also conducted a cost benefit analysis (CBA) to investigate economic, technical, and environmental costs and benefits associated with each alternative. The economic evaluation shows that “electric stationary storage” is the best option since it charges during lower electricity prices and discharges during peaking demand. The economic analysis presents a trade-off chart, so the decision maker can select the alternative based on their preference.

Keywords: carbon dioxide; cost benefit analysis; demand response; demand side management; energy storage system; environmental footprint (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2071-1050/13/17/9504/pdf (application/pdf)
https://www.mdpi.com/2071-1050/13/17/9504/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:13:y:2021:i:17:p:9504-:d:620889

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jsusta:v:13:y:2021:i:17:p:9504-:d:620889