EconPapers    
Economics at your fingertips  
 

Adsorption of Toxic Zinc by Functionalized Lignocellulose Derived from Waste Biomass: Kinetics, Isotherms and Thermodynamics

Jiatao Dang, Hui Wang and Chongqing Wang
Additional contact information
Jiatao Dang: Key Laboratory of New Materials and Facilities for Rural Renewable Energy of Ministry of Agriculture and Rural Affairs, College of Mechanical & Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China
Hui Wang: College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
Chongqing Wang: School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China

Sustainability, 2021, vol. 13, issue 19, 1-12

Abstract: Heavy metals pollution receives worldwide attention due to great toxicity, significant bio-accumulation and non-biodegradability. Adsorption is a promising technique for removing heavy metals from wastewater. Adsorption of zinc (Zn(II)) from aqueous solution was investigated by functionalized lignocellulose derived from fallen leaves. Alkalized lignocellulose (AC), xanthated lignocellulose (XC) and carboxylated lignocellulose (CC) were characterized by Fourier transform infrared spectrum (FTIR), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). The effect of sorbent dosage, solution pH, sorption time and initial Zn(II) concentration on Zn(II) sorption was investigated by single-factor experiment. Sorption kinetics, isotherms and thermodynamics were examined to reveal sorption mechanism. The sorption capacity and removal rate remarkably depend on experimental variables. Zn(II) sorption onto AC, XC and CC is well described by the pseudo second order kinetics and Langmuir isotherm. The sorption process is fast, reaching sorption equilibrium at 30 min. The maximum sorption capacity of Zn(II) onto CC is 46.49 mg/g, higher than that onto AC, XC and other reported sorbents. Thermodynamic parameters indicate that Zn(II) sorption is a spontaneous process. Sorption mechanism is majorly attributed to surface complexation. This work shows the feasibility of removing toxic Zn(II) from aqueous solution by locally available biomass, providing a sustainable approach for wastewater treatment.

Keywords: adsorption; chemical modification; heavy metals; waste biomass; wastewater treatment (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2071-1050/13/19/10673/pdf (application/pdf)
https://www.mdpi.com/2071-1050/13/19/10673/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:13:y:2021:i:19:p:10673-:d:643322

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jsusta:v:13:y:2021:i:19:p:10673-:d:643322