Number of Times Recycled and Its Effect on the Recyclability, Fluidity and Tensile Properties of Polypropylene Injection Molded Parts
Po-Wei Huang and
Hsin-Shu Peng
Additional contact information
Po-Wei Huang: College of Engineering and Science, Feng Chia University, Taichung 40724, Taiwan
Hsin-Shu Peng: College of Engineering and Science, Feng Chia University, Taichung 40724, Taiwan
Sustainability, 2021, vol. 13, issue 19, 1-13
Abstract:
The ease with which modern plastics can be injection molded makes them very suitable for the production of many different products and, today, plastics are often used as substitutes for metal. Polypropylene (PP) is one of the most widely used thermoplastics globally since it is very useful, cost-effective and flexible for molding. However, the amount of harm to the environment caused by plastic waste has become phenomenal and the recycling of plastics has become a serious aspect of environmental protection. PP, as the most commonly used plastic material, was selected for use in this study. It has a melt flow index of 15 g/min and its recyclability, fluidity, and physical properties, as well as manufacturing conditions, were explored in relation to the number of times the material could be recycled (TR). A cavity pressure sensor was used to measure the viscosity index of the recycled plastic after multiple cycles of plasticizing and injection, part molding, scrap-recycling, and crushing. A paperclip-shaped test specimen was used to determine PP fluidity and crystallinity of specimens with different TRs. Tensile tests were used to detect differences in the tensile strength between specimens made from Raw-PP and recycled PP. The results showed that PP that had been recycled several times had a higher melt flow index, material fluidity, melting peak area, crystallinity, crystallization rate, and crystallization temperature. Repeated injection and recycling of the material had reduced the length of the molecular chains and broadened the molecular weight distribution. This improved the fluidity and increased crystallinity. The increase in fluidity made cavity filling easier, reducing the cavity pressure as well as the viscosity index. The results of this study showed that the recycling of the PP could improve the physical properties of the products to a degree and also went some way to further the benefits of a circular economy. The recycling of injection-molded PP material can be added to renewable energy technologies and used in environmental impact assessment.
Keywords: sustainability performance of polypropylene; circular manufacturing of plastic injection molding; reduce–recover–recycle; material flow ability and properties; tensile strength (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2021
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2071-1050/13/19/11085/pdf (application/pdf)
https://www.mdpi.com/2071-1050/13/19/11085/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:13:y:2021:i:19:p:11085-:d:651306
Access Statistics for this article
Sustainability is currently edited by Ms. Alexandra Wu
More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().