Estimating the Artificial Intelligence Learning Efficiency for Civil Engineer Education: A Case Study in Taiwan
Tzuping Chiang
Additional contact information
Tzuping Chiang: Department of Civil Engineering and Engineering Management, National Quemoy University, Kinmen 892, Taiwan
Sustainability, 2021, vol. 13, issue 21, 1-11
Abstract:
The civil engineering educators focused on implementing interdisciplinary learning in artificial intelligence (AI) based on a more innovative application of construction requirements. However, only a few pieces of literature discussed the educational learning efficiency and feedback for this trend. Hence, this study surveyed the 237 data from eight universities that issued the interdisciplinary courses. The factors were modified from the scales in science, technology, engineering, and mathematics education. Further, the descriptive analysis was used to explain this situation in Taiwan. A novel approach based on data envelopment analysis and Mahalanobis distance approaches was proposed to solve this problem. The advantages of the proposed approach were discussed and compared with traditional method. Based on the student gains in the interdisciplinary courses, three groups were clustered and compared. The feedback of a high-input and low-efficiency student group was suggested for improving learning strategies. The sensitivity analysis of this special group showed that effective teaching practice is the key factor in the artificial intelligence courses for civil engineering students. These students may increase technical efficiency by 37% by paying 21% inputs. Therefore, this paper provided a useful and easy approach to make learning strategies for non-informatics students in AI learning.
Keywords: interdisciplinary learning; efficiency; DEA; Mahalanobis distance approach; learning strategy (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2071-1050/13/21/11910/pdf (application/pdf)
https://www.mdpi.com/2071-1050/13/21/11910/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:13:y:2021:i:21:p:11910-:d:666759
Access Statistics for this article
Sustainability is currently edited by Ms. Alexandra Wu
More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().