Economics at your fingertips  

Environmental Footprint and Economics of a Full-Scale 3D-Printed House

Hadeer Abdalla (), Kazi Parvez Fattah (), Mohamed Abdallah () and Adil K. Tamimi ()
Additional contact information
Hadeer Abdalla: Department of Civil Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
Kazi Parvez Fattah: Department of Civil Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
Mohamed Abdallah: Department of Civil and Environmental Engineering, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
Adil K. Tamimi: Department of Civil Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates

Sustainability, 2021, vol. 13, issue 21, 1-19

Abstract: 3D printing, is a newly adopted technique in the construction sector with the aim to improve the economics and alleviate environmental impacts. This study assesses the eco-efficiency of 3D printing compared to conventional construction methods in large-scale structural fabrication. A single-storey 3D-printed house was selected in the United Arab Emirates to conduct the comparative assessment against traditional concrete construction. The life cycle assessment (LCA) framework is utilized to quantify the environmental loads of raw materials extraction and manufacturing, as well as energy consumption during construction and operation phases. The economics of the selected structural systems were investigated through life cycle costing analysis (LCCA), that included mainly the construction costs and energy savings. An eco-efficiency analysis was employed to aggregate the results of the LCA and LCCA into a single framework to aid in decision making by selecting the optimum and most eco-efficient alternative. The findings revealed that houses built using additive manufacturing and 3D printed materials were more environmentally favourable. The conventional construction method had higher impacts when compared to the 3D printing method with global warming potential of 1154.20 and 608.55 kg CO 2 eq, non-carcinogenic toxicity 675.10 and 11.9 kg 1,4-DCB, and water consumption 233.35 and 183.95 m 3 , respectively. The 3D printed house was also found to be an economically viable option, with 78% reduction in the overall capital costs when compared to conventional construction methods. The combined environmental and economic results revealed that the overall process of the 3D-printed house had higher eco efficiency compared to concrete-based construction. The main results of the sensitivity analysis revealed that up to 90% of the environmental impacts in 3D printing mortars can be mitigated with decreasing cement ratios.

Keywords: additive manufacturing; life cycle assessment; life cycle costing; sustainable construction; concrete (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: Track citations by RSS feed

Downloads: (external link) (application/pdf) (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link:

Access Statistics for this article

Sustainability is currently edited by Ms. Hayley Chen

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

Page updated 2022-05-13
Handle: RePEc:gam:jsusta:v:13:y:2021:i:21:p:11978-:d:667957