EconPapers    
Economics at your fingertips  
 

Spatio-Temporal Evolution and Spatial Heterogeneity of Influencing Factors of SO 2 Emissions in Chinese Cities: Fresh Evidence from MGWR

Weipeng Yuan, Hui Sun, Yu Chen and Xuechao Xia
Additional contact information
Weipeng Yuan: School of Economics and Management, Xinjiang University, Urumqi 830046, China
Hui Sun: School of Economics and Management, Xinjiang University, Urumqi 830046, China
Yu Chen: Xinjiang Academy of Social Sciences, Urumqi 830012, China
Xuechao Xia: School of Economics and Management, Xinjiang University, Urumqi 830046, China

Sustainability, 2021, vol. 13, issue 21, 1-26

Abstract: In this study, based on the multi-source nature and humanities data of 270 Chinese cities from 2007 to2018, the spatio-temporal evolution characteristics of SO 2 emissions are revealed by using Moran’s I , a hot spot analysis, kernel density, and standard deviation ellipse models. The spatial scale heterogeneity of influencing factors is explored by using the multiscale geographically weighted regression model to make the regression results more accurate and reliable. The results show that (1) SO 2 emissions showed spatial clustering characteristics during the study period, decreased by 85.12% through pollution governance, and exhibited spatial heterogeneity of differentiation. (2) The spatial distribution direction of SO 2 emissions’ standard deviation ellipse in cities was “northeast–southwest”. The gravity center of the SO 2 emissions shifted to the northeast, from Zhumadian City to Zhoukou City in Henan Province. The results of hot spots showed a polarization trend of “clustering hot spots in the north and dispersing cold spots in the south”. (3) The MGWR model is more accurate than the OLS and classical GWR regressions. The different spatial bandwidths have a different effect on the identification of influencing factors. There were several main influencing factors on urban SO 2 emissions: the regional innovation and entrepreneurship level, government intervention, and urban precipitation; important factors: population intensity, financial development, and foreign direct investment; secondary factors: industrial structure upgrading and road construction. Based on the above conclusions, this paper explores the spatial heterogeneity of urban SO 2 emissions and their influencing factors, and provides empirical evidence and reference for the precise management of SO 2 emission reduction in “one city, one policy”.

Keywords: SO 2 emission; MGWR model; influencing factors; spatial heterogeneity (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/2071-1050/13/21/12059/pdf (application/pdf)
https://www.mdpi.com/2071-1050/13/21/12059/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:13:y:2021:i:21:p:12059-:d:669842

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jsusta:v:13:y:2021:i:21:p:12059-:d:669842