EconPapers    
Economics at your fingertips  
 

Cost-Effective Inspection of Rebar Spacing and Clearance Using RGB-D Sensors

Xinxing Yuan, Fernando Moreu and Maryam Hojati
Additional contact information
Xinxing Yuan: Center for Advanced Research and Computing, University of New Mexico, Albuquerque, NM 87131, USA
Fernando Moreu: Department of Civil, Construction and Environmental Engineering, University of New Mexico, Albuquerque, NM 87131, USA
Maryam Hojati: Department of Civil, Construction and Environmental Engineering, University of New Mexico, Albuquerque, NM 87131, USA

Sustainability, 2021, vol. 13, issue 22, 1-17

Abstract: The quality assurance of constructing reinforced concrete (RC) structures in compliance with their design plays a key role in the durability, serviceability, and sustainability of the built RC elements. One area of concern in the quality control of constructing RC structures is examining the position and dimension of the rebars before pouring fresh concrete. Currently, this is accomplished by visual inspection and individually by hand with limited time available between construction stages. Over the past decades, structural health and monitoring during the construction period has applied remote sensing technologies. However, little research has focused on the use of such technologies to inspect and evaluate rebar placement prior to concrete pouring as quality control. In this study we develop an algorithm that facilitates inspecting the positions of rebars and the cover of concrete using a new-generation low-cost RGB-D sensor to find incorrect rebar placement. The proposed method is evaluated using a typical 5 × 5 two-layer rebar cage in the laboratory by comparing the proposed technique with traditional inspection methods. The results show that the RGB-D sensor can achieve cost-effective inspection for rebar spacing and clearance with an acceptable tolerance. The evaluation of rebar spacing results shows that the maximum standard deviation for rebar spacing is 0.34 inch (8.64 mm) between longitudinal rebar 2 and 3, which is the same as the rebar construction and traditional tape measurement results. The concrete cover estimation results show that the maximum standard deviation for rebar cage concrete cover is 0.19 inch (4.83 mm) for longitudinal rebar 3. The issues of new RGB-D sensor scan settings and the test results will be helpful for practitioners in improving construction quality.

Keywords: automatic rebar inspection; reinforcement concrete structure; RGB-D sensor; slicing algorithm; rebar evaluation (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2071-1050/13/22/12509/pdf (application/pdf)
https://www.mdpi.com/2071-1050/13/22/12509/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:13:y:2021:i:22:p:12509-:d:677725

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jsusta:v:13:y:2021:i:22:p:12509-:d:677725