A Short-Term Power Output Forecasting Based on Augmented Naïve Bayes Classifiers for High Wind Power Penetrations
Gyeongmin Kim and
Jin Hur
Additional contact information
Gyeongmin Kim: Department of Climate and Energy Systems Engineering, Ewha Womans University, Seoul 03760, Korea
Jin Hur: Department of Climate and Energy Systems Engineering, Ewha Womans University, Seoul 03760, Korea
Sustainability, 2021, vol. 13, issue 22, 1-12
Abstract:
Renewable-power-generating resources can provide unlimited clean energy and emit at most minute amounts of air pollutants and greenhouse gases, whereas fossil fuels are contributing to environmental pollution problems and climate change. The share of global power capacity comprising renewable-power-generating resources is increasing. However, due to the variability and uncertainty of wind resources, predicting the power output of these resources remains a key problem that must be resolved to establish stable power system operation and planning. In this study, we propose an ensemble prediction model for wind-power-generating resources based on augmented naïve Bayes classifiers. To select the principal component that affects the wind power outputs from among various meteorological factors, such as temperature, wind speed, and wind direction, prediction of wind-power-generating resources was performed using multiple linear regression (MLR) and a naïve Bayes classification model based on the selected meteorological factors. We proposed applying the analogue ensemble (AnEn) algorithm and the ensemble learning technique to predict the wind power. To validate this proposed hybrid prediction model, we analyzed empirical data from the wind farm of Jeju Island in South Korea and found that the proposed model has lower error than the single prediction models.
Keywords: augmented naïve Bayes classifier; multiple linear regression; analogue ensemble; wind-power-generating resources (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2071-1050/13/22/12723/pdf (application/pdf)
https://www.mdpi.com/2071-1050/13/22/12723/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:13:y:2021:i:22:p:12723-:d:681212
Access Statistics for this article
Sustainability is currently edited by Ms. Alexandra Wu
More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().