EconPapers    
Economics at your fingertips  
 

Life Cycle Sustainability Assessments of an Innovative FRP Composite Footbridge

Timothy Jena and Sakdirat Kaewunruen
Additional contact information
Timothy Jena: Department of Civil Engineering, School of Engineering, University of Birmingham, Birmingham B152TT, UK
Sakdirat Kaewunruen: Department of Civil Engineering, School of Engineering, University of Birmingham, Birmingham B152TT, UK

Sustainability, 2021, vol. 13, issue 23, 1-20

Abstract: Sustainable construction and the design of low-carbon structures is a major concern for the UK construction industry. FRP composite materials are seen as a suitable alternative to traditional construction materials due to their high strength and light weight. Network Rail has developed a prototype for a new innovative footbridge made entirely from FRP with the aim of replacing the current steel design for footbridges. This study conducted a life cycle analysis of this novel composite footbridge design to quantify the cost and environmental benefits. An LCA and LCC analysis framework was used to analyse the environmental impacts and cost savings of the bridge throughout its lifespan from raw material extraction to its end of life. From the results of the LCA and LCC, the FRP footbridge sustainability was reviewed and compared to a standard steel footbridge. Due to the uncertainty of the fibre-reinforced plastic (FRP) structure’s lifespan, multiple scenarios for longevity at the assets-use stage were studied. The study revealed that the FRP bridge offered substantial economic savings whilst presenting potentially worse environmental impacts, mainly caused by the impact of the production of FRP materials. However, our study also demonstrated the influences of uncertainties related to the glass-fibre-reinforced plastic (GFRP) material design life and end-of-life disposal on the whole life cycle analyses. The results show that if the FRP footbridge surpasses its original estimation for lifespan, the economic savings can be increased and the environmental impacts can be reduced substantially.

Keywords: life cycle assessment; life cycle costing; FRP footbridge; sustainability; composite (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://www.mdpi.com/2071-1050/13/23/13000/pdf (application/pdf)
https://www.mdpi.com/2071-1050/13/23/13000/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:13:y:2021:i:23:p:13000-:d:686848

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jsusta:v:13:y:2021:i:23:p:13000-:d:686848