EconPapers    
Economics at your fingertips  
 

Carbon Footprint Assessment in Nature-Based Conservation Management Estates Using South African National Parks as a Case Study

Paulina A. Phophe and Mmoto L. Masubelele
Additional contact information
Paulina A. Phophe: Conservation Services, South African National Parks, Pretoria 0001, South Africa
Mmoto L. Masubelele: Conservation Services, South African National Parks, Pretoria 0001, South Africa

Sustainability, 2021, vol. 13, issue 24, 1-29

Abstract: Nature-based conservation management (NBCMs) estates are seen as natural solutions to climate change and hence immune to harmful greenhouse gas (GHG) emissions. However, NBCMs, in their daily operations to protect and conserve biodiversity, may result in GHG emissions. These may come as a significant carbon burden. This is the first study based on a literature review to look at the carbon footprint of an entire conservation estate operation and management. South African National Parks (SANParks) aimed to contribute to national targets by reducing their fossil-fuel-generated energy consumption by 2% per year until achieving carbon neutrality. The objectives of this paper were (1) to quantify the SANParks C emissions profile at the organization and individual park level and develop recommendations to sustainably reduce carbon emissions and (2) to suggest alternative scenarios that SANParks could follow to achieve zero energy emissions. The study presented an audit analysis of the emission sources linked to SANParks’ daily activities over a five-year period (2015–2019) using the GHGs protocol corporate accounting and reporting standard methodology. Over the reference period, SANParks emitted an average of 73,732 t of carbon dioxide equivalent (tCO 2 e) per year. Most emissions came from electricity usage, 40,681 tCO 2 e (55%), followed by fuel usage for stationary combustion at 26,088 tCO 2 e (35%), and both account for 90% of SANParks’ total emissions. Results have shown the variation amongst individual parks in GHG emission and intensity ratio among the different parks. Total SANParks emission showed a significant relationship with Scope 2, followed by number of employees, building size, Scope 3, and Scope 1, in order. This work recommends how SANParks estate may reduce their carbon emissions at a national and individual level. SANParks achieved 1% year-on-year energy emissions reduction through its renewable base; however, an ambitious target of 8% would be appropriate for a 1.5 °C future based on the energy scenario planning.

Keywords: greenhouse gases; emission sources; GHG protocol; protected areas management; renewable energy; fuel consumption; carbon neutrality; low-carbon transition; energy scenarios (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2071-1050/13/24/13969/pdf (application/pdf)
https://www.mdpi.com/2071-1050/13/24/13969/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:13:y:2021:i:24:p:13969-:d:704977

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jsusta:v:13:y:2021:i:24:p:13969-:d:704977