Infrared Thermal Image-Based Sustainable Fault Detection for Electrical Facilities
Ju Sik Kim,
Kyu Nam Choi and
Sung Woo Kang
Additional contact information
Ju Sik Kim: Digital Solution Section of Korea Hydro & Nuclear Power, Gyeongju 38120, Korea
Kyu Nam Choi: Department of Industrial Engineering, Inha University, Incheon 22212, Korea
Sung Woo Kang: Department of Industrial Engineering, Inha University, Incheon 22212, Korea
Sustainability, 2021, vol. 13, issue 2, 1-15
Abstract:
Faults in electrical facilities may cause severe damages, such as the electrocution of maintenance personnel, which could be fatal, or a power outage. To detect electrical faults safely, electricians disconnect the power or use heavy equipment during the procedure, thereby interrupting the power supply and wasting time and money. Therefore, detecting faults with remote approaches has become important in the sustainable maintenance of electrical facilities. With technological advances, methodologies for machine diagnostics have evolved from manual procedures to vibration-based signal analysis. Although vibration-based prognostics have shown fine results, various limitations remain, such as the necessity of direct contact, inability to detect heat deterioration, contamination with noise signals, and high computation costs. For sustainable and reliable operation, an infrared thermal (IRT) image detection method is proposed in this work. The IRT image technique is used in various engineering fields for diagnosis because of its non-contact, safe, and highly reliable heat detection technology. To explore the possibility of using the IRT image-based fault detection approach, object detection algorithms (Faster R-CNN; Faster Region-based Convolutional Neural Network, YOLOv3; You Only Look Once version 3) are trained using 16,843 IRT images from power distribution facilities. A thermal camera expert from Korea Hydro & Nuclear Power Corporation (KHNP) takes pictures of the facilities regarding various conditions, such as the background of the image, surface status of the objects, and weather conditions. The detected objects are diagnosed through a thermal intensity area analysis (TIAA). The faster R-CNN approach shows better accuracy, with a 63.9% mean average precision (mAP) compared with a 49.4% mAP for YOLOv3. Hence, in this study, the Faster R-CNN model is selected for remote fault detection in electrical facilities.
Keywords: sustainable maintenance; infrared thermal image; object detection; fault detection (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2071-1050/13/2/557/pdf (application/pdf)
https://www.mdpi.com/2071-1050/13/2/557/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:13:y:2021:i:2:p:557-:d:477170
Access Statistics for this article
Sustainability is currently edited by Ms. Alexandra Wu
More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().