EconPapers    
Economics at your fingertips  
 

Towards Mountain Fire Safety Using Fire Spread Predictive Analytics and Mountain Fire Containment in IoT Environment

Imran, Naeem Iqbal, Shabir Ahmad and Do Hyeun Kim
Additional contact information
Imran: Department of Computer Engineering, Jeju National University, Jeju 63243, Korea
Naeem Iqbal: Department of Computer Engineering, Jeju National University, Jeju 63243, Korea
Shabir Ahmad: Software Engineering Department University of Engineering & Technology Mardan, Mardan 23200, Pakistan
Do Hyeun Kim: Department of Computer Engineering, Jeju National University, Jeju 63243, Korea

Sustainability, 2021, vol. 13, issue 5, 1-23

Abstract: Mountains are popular tourist destinations due to their climate, fresh atmosphere, breathtaking sceneries, and varied topography. However, they are at times exposed to accidents, such as fire caused due to natural hazards and human activities. Such unforeseen fire accidents have a social, economic, and environmental impact on mountain towns worldwide. Protecting mountains from such fire accidents is also very challenging in terms of the high cost of fire containment resources, tracking fire spread, and evacuating the people at risk. This paper aims to fill this gap and proposes a three-fold methodology for fire safety in the mountains. The first part of the methodology is an optimization model for effective fire containment resource utilization. The second part of the methodology is a novel ensemble model based on machine learning, the heuristic approach, and principal component regression for predictive analytics of fire spread data. The final part of the methodology consists of an Internet of Things-based task orchestration approach to notify fire safety information to safety authorities. The proposed three-fold fire safety approach provides in-time information to safety authorities for making on-time decisions to minimize the damage caused by mountain fire with minimum containment cost. The performance of optimization models is evaluated in terms of execution time and cost. The particle swarm optimization-based model performs better in terms of cost, whereas the bat algorithm performs better in terms of execution time. The prediction models’ performance is evaluated in terms of root mean square error, mean absolute error, and mean absolute percentage error. The proposed ensemble-based prediction model accuracy for fire spread and burned area prediction is higher than that of the state-of-the-art algorithms. It is evident from the results that the proposed fire safety mechanism is a step towards efficient mountain fire safety management.

Keywords: fire spread prediction; fire spread notification; predictive analysis; optimization; fire containment (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
https://www.mdpi.com/2071-1050/13/5/2461/pdf (application/pdf)
https://www.mdpi.com/2071-1050/13/5/2461/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:13:y:2021:i:5:p:2461-:d:505404

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jsusta:v:13:y:2021:i:5:p:2461-:d:505404