EconPapers    
Economics at your fingertips  
 

Photovoltaic and Thermoelectric Generator Combined Hybrid Energy System with an Enhanced Maximum Power Point Tracking Technique for Higher Energy Conversion Efficiency

Kanagaraj N
Additional contact information
Kanagaraj N: Electrical Engineering Department, College of Engineering, Prince Sattam Bin Abdulaziz University, Wadi Aldawasir 11991, Saudi Arabia

Sustainability, 2021, vol. 13, issue 6, 1-21

Abstract: In this paper, the design and performance investigation of the hybrid photovoltaic–thermoelectric generator (PV–TEG) system with an enhanced fractional order fuzzy logic controller (FOFLC)-based maximum power point tracking (MPPT) technique is presented. A control strategy of the variable incremental conduction (INC) method is employed using FOFLC for the MPPT control technique to efficiently harvest the maximum power from the PV module. The fractional factor α used in the MPPT control algorithm is a supporting fuzzy logic controller (FLC) for the accurate tracking of the maximum power point (MPP) and to maintain the constant output after reaching the MPP. In the proposed system configuration, the TEG is mounted with the PV panel for generating the extra electrical power using the waste heat energy produced on the PV panel due to the incident solar irradiation. The PV and TEG are connected electrically in series to increase output voltage level and thereby improve the power output. The hybrid energy module has better energy conversion efficiency when compared to the standalone PV array. The performance of the proposed MPPT technique is studied for the PV–TEG hybrid energy module under various thermal and electrical operating conditions using a MATLAB software-based simulation. The results of the FOFLC-based MPPT technique are compared with the conventional perturb and observe (P&O) and FLC-based P&O methods. The proposed MPPT technique confirms its effectiveness in extracting the maximum power in terms of speed and accuracy. Moreover, the PV and TEG combined system provides higher energy efficiency than the individual PV module.

Keywords: hybrid PV–TEG energy system; energy efficiency; waste heat recovery; MPPT; fuzzy logic controller (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
https://www.mdpi.com/2071-1050/13/6/3144/pdf (application/pdf)
https://www.mdpi.com/2071-1050/13/6/3144/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:13:y:2021:i:6:p:3144-:d:516050

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-04-18
Handle: RePEc:gam:jsusta:v:13:y:2021:i:6:p:3144-:d:516050