Optimal Combination of External Wall Insulation Thickness and Surface Solar Reflectivity of Non-Residential Buildings in the Korean Peninsula
Jung Ho Kim and
Young Il Kim
Additional contact information
Jung Ho Kim: Department of Architectural Engineering, Graduate School, Seoul National University of Science and Technology, Seoul 01811, Korea
Young Il Kim: School of Architecture, Seoul National University of Science and Technology, Seoul 01811, Korea
Sustainability, 2021, vol. 13, issue 6, 1-24
Abstract:
To delay fossil energy depletion and implement the Paris Climate Change Accord, the South Korean government is attempting to reduce greenhouse gas emissions with the establishment of the 2030 Roadmap. The insulation performance of external walls is being continuously enhanced in the architectural domain. However, Korea’s policy and construction market focuses only on the heat resistance of buildings’ external walls to enhance the insulation performance, leading to an increased thickness of the insulation materials. In this study, the relationship between the surface reflectivity and insulation thickness of external walls was examined to formulate an effective insulation strategy for buildings in Korea. Office buildings of 12 regions in the Korean Peninsula were considered. The dynamic energy simulation program EnergyPlus was used to perform the heating and cooling load analyses. The present worth method was adopted to perform the economic analysis. The analysis of the cooling and heating loads indicated that a change occurred not only in terms of the latitude but also between the Eastern and Western regions. The energy consumption could be reduced by increasing the reflectivity in the Southern region and lowering the reflectivity in the Northern region, based on the total load. In addition, a higher latitude corresponded to a higher energy saving effect owing to the increased insulation thickness. In the case of Jeju Island and Busan, regions with a relatively large cooling load and small heating load, the total load is little affected by insulation thickness at high reflectivity. If the external skin was considered to have the optimal reflectivity, the regions for optimal insulation thickness could be divided into three categories: north, central and south.
Keywords: EnergyPlus; heating and cooling loads; insulation thickness; present worth method; reflectivity (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2071-1050/13/6/3205/pdf (application/pdf)
https://www.mdpi.com/2071-1050/13/6/3205/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:13:y:2021:i:6:p:3205-:d:517075
Access Statistics for this article
Sustainability is currently edited by Ms. Alexandra Wu
More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().