EconPapers    
Economics at your fingertips  
 

Deciphering the Effects of Waste Amendments on Particulate Organic Carbon and Soil C-Mineralization Dynamics

Xiang Ma, Qingqing Zhang, Haibing Wu and Jing Liang
Additional contact information
Xiang Ma: Shanghai Academy of Landscape Architecture Science and Planning, Shanghai 200232, China
Qingqing Zhang: Shanghai Academy of Landscape Architecture Science and Planning, Shanghai 200232, China
Haibing Wu: Shanghai Academy of Landscape Architecture Science and Planning, Shanghai 200232, China
Jing Liang: Shanghai Academy of Landscape Architecture Science and Planning, Shanghai 200232, China

Sustainability, 2021, vol. 13, issue 7, 1-14

Abstract: It is important to understand the dynamics of soil carbon to study the effects of waste amendment inputs on soil organic carbon decomposition. The aim of this study was to evaluate the effect of waste amendment carbon input on the soil organic carbon (SOC) content, soil particulate organic carbon (POC) content and soil organic carbon mineralization rate dynamics. A 60-day experiment was carried out in the laboratory. The following treatments were compared: (1) CK: soil without amendments; (2) FW1: soil with food waste compost (soil/food waste compost = 100:1); (3) FW2: soil with food waste compost (soil/food waste compost = 100:2); (4) GW1: soil with garden waste compost (soil/garden waste compost = 100:0.84); (5) GW2: soil with garden waste compost (soil/garden waste compost = 100:1.67); (6) FGW1: soil amendments mixture (soil/food waste compost/garden waste compost = 100:0.5:0.42); (7) FGW2: soil amendments mixture (soil/food waste compost/garden waste compost = 100:1:0.84); the inputs of amendment carbon to FW1, GW1 and FGW1 were 2.92 g kg −1 , the inputs of amendment carbon to FW2, GW2 and FGW2 were 5.84 g kg −1 . The results showed that the addition of waste amendments increased the amount of cumulative mineralization from 95% to 262% and accelerated the rate of soil mineralization. After adding organic materials, the change in the soil organic carbon mineralization rate could be divided into two stages: the fast stage and the slow stage. The dividing point of the two stages was approximately 10 days. When equal amounts of waste amendment carbon were input to the soil, there was no significant difference in SOC between food waste and garden waste. However, SOC increased with the amount of amendment addition. However, for POC, there was no significant difference between the different amounts of carbon input to the garden waste compost treatments. SOC and POC were significantly correlated with the cumulative emissions of CO 2 .

Keywords: food waste compost; garden waste compost; soil organic carbon mineralization; soil organic carbon; particulate organic carbon (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2021
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2071-1050/13/7/3790/pdf (application/pdf)
https://www.mdpi.com/2071-1050/13/7/3790/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:13:y:2021:i:7:p:3790-:d:526223

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-04-18
Handle: RePEc:gam:jsusta:v:13:y:2021:i:7:p:3790-:d:526223