Economic and Environmental Assessment of Two Different Rain Water Harvesting Systems for Agriculture
Luigi Pari,
Alessandro Suardi,
Walter Stefanoni,
Francesco Latterini and
Nadia Palmieri
Additional contact information
Luigi Pari: Consiglio per la Ricerca in Agricoltura e l’analisi dell’Economia Agraria (CREA)—Centro di Ricerca Ingegneria e Trasformazioni Agroalimentari, Via della Pascolare 16, Monterotondo, 00015 Rome, Italy
Alessandro Suardi: Consiglio per la Ricerca in Agricoltura e l’analisi dell’Economia Agraria (CREA)—Centro di Ricerca Ingegneria e Trasformazioni Agroalimentari, Via della Pascolare 16, Monterotondo, 00015 Rome, Italy
Walter Stefanoni: Consiglio per la Ricerca in Agricoltura e l’analisi dell’Economia Agraria (CREA)—Centro di Ricerca Ingegneria e Trasformazioni Agroalimentari, Via della Pascolare 16, Monterotondo, 00015 Rome, Italy
Francesco Latterini: Consiglio per la Ricerca in Agricoltura e l’analisi dell’Economia Agraria (CREA)—Centro di Ricerca Ingegneria e Trasformazioni Agroalimentari, Via della Pascolare 16, Monterotondo, 00015 Rome, Italy
Nadia Palmieri: Consiglio per la Ricerca in Agricoltura e l’analisi dell’Economia Agraria (CREA)—Centro di Ricerca Ingegneria e Trasformazioni Agroalimentari, Via della Pascolare 16, Monterotondo, 00015 Rome, Italy
Sustainability, 2021, vol. 13, issue 7, 1-13
Abstract:
Increasing aridity and subsequent water scarcity are currently among the major problems of agriculture. Rainwater harvesting could represent a way to tackle this issue, and, as a consequence, scientific research has been more and more focused on such topic. On the other hand, few scientific studies related to economic and environmental assessment of rainwater harvesting systems in agriculture are available. The present study carried out an economic and environmental analysis of two different systems for rainwater harvesting: a typical pond and an innovative flexible water storage system (FWSS). The environmental and economic performance of the systems was compared using the Life Cycle Assessment (LCA) and Life Cycle Costing (LCC) methodologies, referring to a functional unit (FU) of 1 m 3 of storable water. The FWSS showed better environmental end economic performance than the pond system, resulting with both lower environmental impacts (17.04 g per m 3 CO 2 vs 28.2 g per m 3 CO 2 ) and lower costs (16.94 € per m 3 vs 20.41 € per m 3 ). Moreover, the pond system was more impactful than the FWSS for all the 17 categories investigated. Therefore, the FWSS can be a suitable solution for water harvesting in agriculture sector, showing interesting features for farmers.
Keywords: ecoefficiency; life cycle assessment (LCA); life cycle costing (LCC); run-off; pond; flexible water storage system (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.mdpi.com/2071-1050/13/7/3871/pdf (application/pdf)
https://www.mdpi.com/2071-1050/13/7/3871/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:13:y:2021:i:7:p:3871-:d:527739
Access Statistics for this article
Sustainability is currently edited by Ms. Alexandra Wu
More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().