EconPapers    
Economics at your fingertips  
 

Using Molecular Dynamics Simulation to Analyze the Feasibility of Using Waste Cooking Oil as an Alternative Rejuvenator for Aged Asphalt

Lin Li, Cheng Xin, Mingyang Guan and Meng Guo
Additional contact information
Lin Li: China Academy of Transportation Sciences, Beijing 100029, China
Cheng Xin: The Key Laboratory of Urban Security and Disaster Engineering of Ministry of Education, Beijing University of Technology, Beijing 100124, China
Mingyang Guan: The Key Laboratory of Urban Security and Disaster Engineering of Ministry of Education, Beijing University of Technology, Beijing 100124, China
Meng Guo: The Key Laboratory of Urban Security and Disaster Engineering of Ministry of Education, Beijing University of Technology, Beijing 100124, China

Sustainability, 2021, vol. 13, issue 8, 1-13

Abstract: The purpose of this study was to investigate the regeneration effect of waste cooking oil (WCO) on aged asphalt with molecular dynamics (MD) simulation, comparing it with a rejuvenator. Firstly, the molecular models of virgin and aged asphalt were established by blending the four components of asphalt (saturate, aromatic, resin, and asphaltenes). Then, different dosages of the rejuvenator and WCO (6, 9, and 12%) were included in the aged asphalt model for its regeneration. After that, MD simulations were utilized for researching the mechanical and cohesive properties of the recycled asphalt, including its density, viscosity, cohesive energy density (CED), shear modulus (G), bulk modulus (K), and elastic modulus (E). The results show that the density values of the asphalt models were relatively lower than the existing experimental results in the literature, which is mostly attributed to the fact that the heteroatoms of the asphalt molecules were not considered in the simulation. On the other hand, the WCO addition decreased the viscosity, the shear modulus (G), the bulk modulus (K), and the elastic modulus (E) of the aged asphalt, improving its CED. Moreover, the nature of the aged asphalt was gradually restored with increasing rejuvenator or WCO contents. Compared with the rejuvenator, the viscosity of the aged asphalt was more effectively restored through adding WCO, while the effect of the CED and the mechanical properties recovery of the aged asphalt was relatively low. This implies that WCO could restore partial mechanical properties of aging asphalt, which proves the possibility of using WCO as an asphalt rejuvenator. Additionally, the MD simulation played an important role in understanding the molecular interactions among the four components of asphalt and the rejuvenator, which will serve as a guideline to better design a WCO rejuvenator and optimize its content.

Keywords: molecular dynamics simulations; waste cooking oil; rejuvenator; mechanical properties; cohesive properties (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2021
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://www.mdpi.com/2071-1050/13/8/4373/pdf (application/pdf)
https://www.mdpi.com/2071-1050/13/8/4373/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:13:y:2021:i:8:p:4373-:d:536022

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jsusta:v:13:y:2021:i:8:p:4373-:d:536022