EconPapers    
Economics at your fingertips  
 

Optimized Design of Structure of High-Bending-Rigidity Circular Tube

Shaoying Li and Zhongquan Qu
Additional contact information
Shaoying Li: Yunnan Observatories, Chinese Academy of Sciences, Phoenix Mountain, East District, Kunming 650216, China
Zhongquan Qu: Yunnan Observatories, Chinese Academy of Sciences, Phoenix Mountain, East District, Kunming 650216, China

Sustainability, 2021, vol. 13, issue 8, 1-23

Abstract: Circular tubes are widely used in daily life and manufacture under bending load. The structural parameters of a circular tube, such as its wall thickness, number and shapes of ribs, and supporting flanges, are closely related to the tube’s bending rigidity. In this study, a tube with eight ribs and a flange was optimized, in order to obtain the lowest weight, through comprehensive structural optimization. We obtained the optimal structural parameters of the tube and the influence of the structural parameters on the tube’s weight. The structural parameters of tubes with different numbers of ribs were optimized. The tube with different number of ribs had the same inner diameter, bending load, and length as the tube with eight ribs. We conducted an experiment to verify the structural optimization simulation. Different tube sizes were subsequently optimized. The optimized tube with four trapezoidal ribs and a flange reduced the weight by more than 73% while maintaining the same deformation. The weight of the optimized tube with a flange reached a stable value after four trapezoidal ribs were added. When the number of ribs was two, the weight was the largest. The analysis results were consistent with the numerical results. A new AWATR (appropriate width and thickness of ribs can improve the bending rigidity of the tubes) formula was proposed, which can effectively improve the bending rigidity of tubes. Different shapes of tubes were optimized and compared. The optimized tube with four trapezoidal ribs and a flange was the lightest and easy to manufacture.

Keywords: circular tube; multiple variable parameters; optimization; finite element analysis; trapezoidal ribs; AWATR (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2071-1050/13/8/4534/pdf (application/pdf)
https://www.mdpi.com/2071-1050/13/8/4534/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:13:y:2021:i:8:p:4534-:d:538981

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jsusta:v:13:y:2021:i:8:p:4534-:d:538981