EconPapers    
Economics at your fingertips  
 

Experimental Study on the Effects of Aspect Ratio on the Wind Pressure Coefficient of Piloti Buildings

Jangyoul You and Changhee Lee
Additional contact information
Jangyoul You: Department of Architecture Engineering, Songwon University, Gwangju 61756, Korea
Changhee Lee: Department of Mechanical and Shipbuilding Convergence Engineering, Pukyong National University, Busan 48547, Korea

Sustainability, 2021, vol. 13, issue 9, 1-16

Abstract: Owing to strong winds during the typhoon season, damage to pilotis in the form of dropout of the exterior materials occurs frequently. Pilotis placed at the end exhibit a large peak wind pressure coefficient of the ceiling. In this study, the experimental wind direction angle of wind pressure tests was conducted in seven directions, with wind test angles varying from 0° to 90° at intervals of 15°, centered on the piloti position, which was accomplished using the wind tunnel experimental system. Regardless of the height of the building, the maximum peak wind pressure coefficient was observed at the center of the piloti, whereas the minimum peak wind pressure coefficient was noted at the corners, which corresponds with the wind direction inside the piloti. The distribution of the peak wind pressure coefficient was similar for both suburban and urban environments. However, in urban areas, the maximum peak wind pressure coefficient was approximately 1.4–1.7 times greater than that in suburban areas. The maximum peak wind pressure coefficient of the piloti ceiling was observed at the inside corner, whereas the minimum peak wind pressure coefficient was noted at the outer edge of the ceiling. As the height of the building increased, the maximum peak wind pressure coefficient decreased. Suburban and urban areas exhibited similar peak wind pressure distributions; however, the maximum peak wind pressure coefficient in urban areas was approximately 1.2–1.5 times larger than that in suburban areas.

Keywords: piloti; peak wind pressure coefficient; corner-type piloti; end-type piloti; wind tunnel experiment (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2071-1050/13/9/5206/pdf (application/pdf)
https://www.mdpi.com/2071-1050/13/9/5206/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:13:y:2021:i:9:p:5206-:d:549832

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jsusta:v:13:y:2021:i:9:p:5206-:d:549832