EconPapers    
Economics at your fingertips  
 

Dynamics of Soil Carbon Fractions and Carbon Stability in Relation to Grassland Degradation in Xinjiang, Northwest China

Qiao Xu, Yan Wei, Xinfeng Zhao and Hailiang Xu
Additional contact information
Qiao Xu: College of Grassland Science, Xinjiang Agricultural University, Urumqi 830052, China
Yan Wei: College of Grassland Science, Xinjiang Agricultural University, Urumqi 830052, China
Xinfeng Zhao: Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
Hailiang Xu: Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China

Sustainability, 2022, vol. 14, issue 10, 1-11

Abstract: Grassland degradation usually results in significant shifts in vegetation species composition and plant biomass, thus altering the soil organic carbon (SOC) content and stability. Dynamics of labile carbon fractions after grassland degradation were well addressed; however, the changes in stable carbon fractions were poorly quantified. Soil samples at 0–10 cm and 10–20 cm depth were collected from a native grassland (NA), a lightly degraded grassland (LD), a moderately degraded grassland (MD), and a severely degraded grassland (SD) in northwest China to assess the influence of grassland degradation on the total SOC content, four SOC fractions (very labile carbon, CF1; labile carbon, CF2; less labile carbon, CF3; non-labile carbon, CF4), and SOC stability. Compared with the NA, the contents under LD, MD, and SD at 0–20 cm depth reduced by 20.58%, 29.22%, and 64.58% for total SOC, 21.38%, 23.00%, and 63.66% for CF1, 13.81%, 20.58%, and 62.26% for CF2, 24.30%, 35.05%, and 68.63% for CF3, and 22.17%, 38.80%, and 63.82% for CF4, respectively. The linear relationships between the total SOC and the four fractions of CF1, CF2, CF3, and CF4 were significant in this study. The lability index of SOC under the NA, LD, MD, and SD was 1.57, 1.59, 1.67, and 1.57, respectively, and no significant difference was found among the four grasslands. To conclude, grassland degradation changes the contents of total SOC and its labile and stable fractions but did not change the SOC stability in northwest China.

Keywords: stable carbon fractions; lability index; grassland; arid and semi-arid region (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2071-1050/14/10/5860/pdf (application/pdf)
https://www.mdpi.com/2071-1050/14/10/5860/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:14:y:2022:i:10:p:5860-:d:813979

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jsusta:v:14:y:2022:i:10:p:5860-:d:813979