Impact of Urbanization on Seismic Risk: A Study Based on Remote Sensing Data
Liqiang An and
Jingfa Zhang
Additional contact information
Liqiang An: Key Laboratory of Earthquake Engineering and Engineering Vibration, China Earthquake Administration, Institute of Engineering Mechanics, China Earthquake Administration, Harbin 150080, China
Jingfa Zhang: Key Laboratory of Emergency Satellite Engineering and Application, Ministry of Emergency Management, Beijing 100124, China
Sustainability, 2022, vol. 14, issue 10, 1-25
Abstract:
The management of seismic risk is an important aspect of social development. However, urbanization has led to an increase in disaster-bearing bodies, making it more difficult to reduce seismic risk. To understand the changes in seismic risk associated with urbanization and then adjust the risk management strategy, remote-sensing technology is necessary. By identifying the types of earthquake-bearing bodies, it is possible to estimate the seismic risk and then determine the changes. For this purpose, this study proposes a set of algorithms that combine deep-learning models with object-oriented image classification and extract building information using multisource remote sensing data. Following this, the area of the building is estimated, the vulnerability is determined, and, lastly, the economic and social impacts of an earthquake are determined based on the corresponding ground motion level and fragility function. Our study contributes to the understanding of changes in seismic risk caused by urbanization processes and offers a practical reference for updating seismic risk management, as well as a methodological framework to evaluate the effectiveness of seismic policies. Experimental results indicate that the proposed model is capable of effectively capturing buildings’ information. Through verification, the overall accuracy of the classification of vulnerability types reaches 86.77%. Furthermore, this study calculates social and economic losses of the core area of Tianjin Baodi District in 2011, 2012, 2014, 2016, 2018, 2020, and 2021, obtaining changes in seismic risk in the study area. The result shows that for rare earthquakes at night, although the death rate decreased from 2.29% to 0.66%, the possible death toll seems unchanged, due to the increase in population.
Keywords: remote sensing; earthquakes; exposure evaluation; risk assessment; vulnerability assessment; seismic risk management; Tianjin Baodi; China (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2071-1050/14/10/6132/pdf (application/pdf)
https://www.mdpi.com/2071-1050/14/10/6132/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:14:y:2022:i:10:p:6132-:d:818319
Access Statistics for this article
Sustainability is currently edited by Ms. Alexandra Wu
More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().