Selecting a Suitable Sustainable Construction Method for Australian High-Rise Building: A Multi-Criteria Analysis
Satheeskumar Navaratnam
Additional contact information
Satheeskumar Navaratnam: School of Engineering, RMIT University, Melbourne 3001, Australia
Sustainability, 2022, vol. 14, issue 12, 1-17
Abstract:
The evolution of innovative construction technology and automation has rapidly transformed the construction industry over the last few decades. However, selecting the most efficient and sustainable construction technology for high-rise building construction is a critical factor in completing the project successfully. This requires a multiple-judgment-decision process relevant to cost, time, environment, sustainability, quality, etc. Thus, this research aims to identify the most suitable sustainable construction method for high-rise building construction in Australia. Three construction methods (i.e., automated building construction, aluminium formwork construction, and off-site construction) and robotic construction technology are reviewed in terms of economic, equity and environmental performance. A detailed multi-criteria analysis is conducted concerning the weighting calculated for each construction method, which aids in recommending a sustainable and cost-effective method. The analytical hierarchy process (AHP) is used as a multi-attribute decision-making tool to determine the weighting factors. The results show that the off-site construction method and robotic construction technique significantly improve the construction performance of high-rise construction in Australia. However, the finding is based on data obtained from a limited number of experts. Thus, a detailed case study with a greater number of expert opinions is needed to ensure the significance of the finding. However, the AHP-based approach method can be used to select sustainable construction alternatives for high-rise buildings.
Keywords: automated building construction; aluminium formwork construction; off-site construction; analytical hierarchy process; multi-criteria analysis (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2071-1050/14/12/7435/pdf (application/pdf)
https://www.mdpi.com/2071-1050/14/12/7435/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:14:y:2022:i:12:p:7435-:d:841435
Access Statistics for this article
Sustainability is currently edited by Ms. Alexandra Wu
More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().