EconPapers    
Economics at your fingertips  
 

Performance Comparison of Predictive Methodologies for Carbon Emission Credit Price in the Korea Emission Trading System

Hyeonho Kim, Yujin Kim, Yongho Ko and Seungwoo Han
Additional contact information
Hyeonho Kim: Department of Architectural Engineering, INHA University, 100, Inha-ro, Michuhol-gu, Incheon 22212, Korea
Yujin Kim: Department of Architectural Engineering, INHA University, 100, Inha-ro, Michuhol-gu, Incheon 22212, Korea
Yongho Ko: Department of Architectural Engineering, INHA University, 100, Inha-ro, Michuhol-gu, Incheon 22212, Korea
Seungwoo Han: Department of Architectural Engineering, INHA University, 100, Inha-ro, Michuhol-gu, Incheon 22212, Korea

Sustainability, 2022, vol. 14, issue 13, 1-20

Abstract: Research related to the carbon-emission credit-price prediction model has only considered the effects of specific indicators, such as coal and oil prices, and only long-term prediction studies have been conducted. Recently, carbon emission credits have been recognized as investment assets, such as stocks and real estate. Accordingly, a carbon-emission credit prediction method is needed to establish an industrial strategy with low risk. In this study, an attempt was made to model the behavior of market participants in the time series model by analyzing the correlation between the search query volume data and the Korean Allowance Unit (KAU). Multiple Linear Regression Analysis (MRA) and Auto-Regressive Integrated Moving Average models were developed. In all price prediction models, the error of the prediction model at the 4th time was low. In the case of MRA, the error in the predicted near future price was small, but the error rate increased with increasing analysis period and prediction time. The error rate of ARIMA was lower than that of MRA, but it did not show a rapid change. These research findings will be beneficial to investigating and finding more rigid and reliable methodologies that can be used to predict various important values in similar fields in the future.

Keywords: K-ETS; MRA; ARIMA; emission credit; time-series data; prediction model (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2071-1050/14/13/8177/pdf (application/pdf)
https://www.mdpi.com/2071-1050/14/13/8177/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:14:y:2022:i:13:p:8177-:d:855710

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jsusta:v:14:y:2022:i:13:p:8177-:d:855710