EconPapers    
Economics at your fingertips  
 

Tree Species Diversity and Stand Attributes Differently Influence the Ecosystem Functions of Pinus yunnanensis Secondary Forests under the Climate Context

Lei Wang, Xiaobo Huang and Jianrong Su
Additional contact information
Lei Wang: Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming 650224, China
Xiaobo Huang: Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming 650224, China
Jianrong Su: Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming 650224, China

Sustainability, 2022, vol. 14, issue 14, 1-12

Abstract: It has been widely reported that biodiversity, ecosystems, and functional traits are positively interrelated in natural forest ecosystems. However, it remains unclear whether these relationships should be expected in secondary forests. In this study, we hypothesized that the multifunctionality (EMF) is affected by the climate dependency of tree-species diversity and stand attribute diversity in a secondary forest dominated by Pinus yunnanensis . By using forest inventory data from a wide range of areas, we quantified the aboveground biomass, soil organic carbon, ratio of soil carbon and nitrogen, total soil nitrogen, total soil phosphorus, total soil potassium, tree-species diversity, and stand attribute diversity (i.e., individual tree-size variations). We also quantified the climate data, including the mean annual temperature (MAT), and mean annual precipitation (MAP). We found that a higher MAT directly constrains all the ecosystem multifunctionalities (EMFs) and three of the five single functions. A higher MAP was negatively correlated with all the EMFs and four of the five single functions, but indirectly through diversity indices. Stand attribute diversity better explained the EMFs rather than tree species diversity. Meanwhile, most of the single functions were highly correlated with stand attribute diversity rather than tree species diversity. These results highlight the importance of diversity in promoting forest multifunctionality and underscore the importance of the climate context in defining EMF and shaping the relationship between diversity and ecosystem functions. We argue that the climate context should be taken into account when maximizing forest complexity, so as to enhance the multifunctionality of Pinus yunnanensis secondary forests.

Keywords: secondary forests; ecosystem multifunctionality; Pinus yunnanensis; stand attribute diversity; climate dependency; forest functions (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2071-1050/14/14/8332/pdf (application/pdf)
https://www.mdpi.com/2071-1050/14/14/8332/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:14:y:2022:i:14:p:8332-:d:858031

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jsusta:v:14:y:2022:i:14:p:8332-:d:858031