Phytoremediation Using Willow in Industrial Contaminated Soil
Tommy Landberg and
Maria Greger
Additional contact information
Tommy Landberg: Department of Ecology, Environment and Plant Sciences, Stockholm University, 10691 Stockholm, Sweden
Maria Greger: Department of Ecology, Environment and Plant Sciences, Stockholm University, 10691 Stockholm, Sweden
Sustainability, 2022, vol. 14, issue 14, 1-11
Abstract:
In our previous work, we used Salix viminalis in the field to decontaminate agricultural soils containing cadmium. Our aim in the current study was to determine whether S. viminalis could decrease the levels of heavy metals, arsenic, polychlorinated biphenyls (PCBs) and polycyclic aromatic hydrocarbons (PAHs) in industrial soil at a former workshop site. The site was planted with S. viminalis cuttings in July 2003. Soil samples were collected yearly from 2005 to 2015 and analysed for heavy metals, arsenic, PCBs and PAHs. The results showed that 21% of chromium, 30% of arsenic, 54% of cadmium, 61% of zinc, 62% of copper, 63% of lead, 87% of nickel, 53% of PCBs and up to 73% of PAHs were removed from the soil after 10 years of S. viminalis treatment. After just 1 year of Salix cultivation, a significant decrease was observed in most of the contaminants in the soil. The reduction in contaminants was linear at first but slowed down after a few years. The number of years prior to a slow-down in rate of removal differed between the contaminants. This study concludes that S. viminalis can be used for the phytoremediation of contaminated industrial soil and that the rate of decontamination differs between substances.
Keywords: arsenic; metals; PAH; PCB; phytoremediation; Salix (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2022
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2071-1050/14/14/8449/pdf (application/pdf)
https://www.mdpi.com/2071-1050/14/14/8449/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:14:y:2022:i:14:p:8449-:d:859775
Access Statistics for this article
Sustainability is currently edited by Ms. Alexandra Wu
More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().