EconPapers    
Economics at your fingertips  
 

Application of Remote-Sensing-Based Hydraulic Model and Hydrological Model in Flood Simulation

Chaowei Xu, Jiashuai Yang and Lingyue Wang
Additional contact information
Chaowei Xu: College of Urban and Environmental Sciences, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing 100871, China
Jiashuai Yang: College of Urban and Environmental Sciences, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing 100871, China
Lingyue Wang: College of Urban and Environmental Sciences, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing 100871, China

Sustainability, 2022, vol. 14, issue 14, 1-14

Abstract: Floods are one of the main natural disaster threats to the safety of people’s lives and property. Flood hazards intensify as the global risk of flooding increases. The control of flood disasters on the basin scale has always been an urgent problem to be solved that is firmly associated with the sustainable development of water resources. As important nonengineering measures for flood simulation and flood control, the hydrological and hydraulic models have been widely applied in recent decades. In our study, on the basis of sufficient remote-sensing and hydrological data, a hydrological (Xin’anjiang (XAJ)) and a two-dimensional hydraulic (2D) model were constructed to simulate flood events and provide support for basin flood management. In the Chengcun basin, the two models were applied, and the model parameters were calibrated by the parameter estimation (PEST) automatic calibration algorithm in combination with the measured data of 10 typical flood events from 1990 to 1996. Results show that the two models performed well in the Chengcun basin. The average Nash–Sutcliffe efficiency (NSE), percentage error of peak discharge (PE), and percentage error of flood volume (RE) were 0.79, 16.55%, and 18.27%, respectively, for the XAJ model, and those values were 0.76, 12.83%, and 11.03% for 2D model. These results indicate that the models had high accuracy, and hydrological and hydraulic models both had good application performance in the Chengcun basin. The study can a provide decision-making basis and theoretical support for flood simulation, and the formulation of flood control and disaster mitigation measures in the basin.

Keywords: remote sensing; hydraulic model; hydrological model; flood simulation; land use (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2071-1050/14/14/8576/pdf (application/pdf)
https://www.mdpi.com/2071-1050/14/14/8576/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:14:y:2022:i:14:p:8576-:d:861897

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jsusta:v:14:y:2022:i:14:p:8576-:d:861897