EconPapers    
Economics at your fingertips  
 

Dynamic Rule Curves and Streamflow under Climate Change for Multipurpose Reservoir Operation Using Honey-Bee Mating Optimization

Songphol Songsaengrit and Anongrit Kangrang
Additional contact information
Songphol Songsaengrit: Faculty of Engineering, Mahasarakham University, Kantharawichai District, Maha Sarakham 44150, Thailand
Anongrit Kangrang: Faculty of Engineering, Mahasarakham University, Kantharawichai District, Maha Sarakham 44150, Thailand

Sustainability, 2022, vol. 14, issue 14, 1-17

Abstract: Climate change in the watershed above the reservoir has a direct impact on the quantity of streamflow that enters the reservoir and the management of water resources. Developing effective reservoir rule curves helps reduce the risk of future failures of water resource management. The purpose of this study was to analyze the influence of climate change on the volume of streamflow entering the Ubolratana Reservoir, Thailand during the years 2020–2049 with climate simulations from the CIMP5 model under RCP4.5 and RCP8.5 scenarios. SWAT models were used to forecast future reservoir streamflow quantities. Moreover, suitable reservoir rule curves using the Honey-Bee Mating Optimization (HBMO) were developed and the effectiveness of the new rule curves was assessed. According to the research findings, the average yearly streamflow in the future apparently grew from 32% in the base years (2011–2019) and 65% under the RCP4.5 and RCP8.5 scenarios, respectively. It was discovered that the average monthly streamflow was higher in the rainy season than in the dry season. Both of the projected situations have a form compatible with the present rule curves in the section of the new reservoir rule curves generated with the HBMO. Furthermore, the newly constructed rule curves may allow the reservoir to keep more water during the rainy season, thereby assuring that there will be adequate water during the following dry season. Additionally, during the dry season, the reservoir was able to release more water that would be able to reduce the water shortage, indicating that it was able to effectively reduce the amount of water shortage and average overflow under RCP4.5 and RCP8.5 situations.

Keywords: climate change; streamflow; Honey-Bee Mating Optimization; reservoir rule curves (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/2071-1050/14/14/8599/pdf (application/pdf)
https://www.mdpi.com/2071-1050/14/14/8599/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:14:y:2022:i:14:p:8599-:d:862332

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jsusta:v:14:y:2022:i:14:p:8599-:d:862332