EconPapers    
Economics at your fingertips  
 

Study on Fire Ventilation Control of Subway Tunnel: A Case Study for Dalian Subway

Sihui Dong, Xinyu Zhang and Kang Wang
Additional contact information
Sihui Dong: School of Traffic and Transportation Engineering, Dalian Jiaotong University, Dalian 116028, China
Xinyu Zhang: School of Traffic and Transportation Engineering, Dalian Jiaotong University, Dalian 116028, China
Kang Wang: College of Safety Science and Engineering, Xi’an University of Science and Technology, Xi’an 710054, China

Sustainability, 2022, vol. 14, issue 14, 1-17

Abstract: During the actual operation of a subway company, only one ventilation-control scheme is considered in the emergency plan, without considering the specific location difference of the fire source. However, in the case of an actual tunnel fire, the best ventilation-control scheme and personnel-evacuation scheme are very different given the potential different locations of the fire source. We consider the use of a connecting channel for smoke exhaust or personnel evacuation and study the best ventilation-control scheme and personnel-evacuation scheme, when the fire source is at different positions relative to the train, and the train is at different positions relative to the connecting channel. Taking the tunnel between Yaojia Station and Nanguanling Station of Metro Line 1 in Dalian, China, as an example, a 1:1 full-scale numerical model is established to study dangerous fire-related conditions, such as carbon monoxide concentration, smoke visibility, and temperature. Nine typical working conditions of a tunnel-section fire are studied. The traditional and commonly used longitudinal-ventilation mode can ensure smoke control and personnel evacuation. For the working conditions of fire in the end of the train the ventilation-control scheme designed in this paper can ensure the safety of personnel. However, the working conditions of fire in the middle of a train are the most dangerous, and about 50% of personnel are affected by smoke during the escape. This paper analyzes the impact of the longitudinal-ventilation mode, transverse-ventilation mode, and semi-transverse-ventilation mode on personnel evacuation under such working conditions. It is found that with the semi-transverse-ventilation mode, personnel are least affected. Furthermore, semi-transverse ventilation requires a higher engineering investment, which is more than RMB 2000 per meter of tunnel. If the economic conditions are available, it is recommended to consider the semi-transverse-ventilation mode instead of the longitudinal-ventilation mode. The research results can provide guidance for the emergency-control scheme for subway-tunnel fire operation.

Keywords: location of fire source; subway fire; smoke exhaust mode; longitudinal wind speed; location of smoke exhaust outlet; backlayering; connecting channel (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://www.mdpi.com/2071-1050/14/14/8695/pdf (application/pdf)
https://www.mdpi.com/2071-1050/14/14/8695/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:14:y:2022:i:14:p:8695-:d:863866

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jsusta:v:14:y:2022:i:14:p:8695-:d:863866