EconPapers    
Economics at your fingertips  
 

Effect of Rising Temperature and Carbon Dioxide on the Growth, Photophysiology, and Elemental Ratios of Marine Synechococcus: A Multistressor Approach

Samarpita Basu and Katherine R. M. Mackey
Additional contact information
Samarpita Basu: Earth System Science, University of California Irvine, Irvine, CA 92697, USA
Katherine R. M. Mackey: Earth System Science, University of California Irvine, Irvine, CA 92697, USA

Sustainability, 2022, vol. 14, issue 15, 1-21

Abstract: Marine picocyanobacteria belonging to the genus Synechococcus are one of the most abundant photosynthetic organisms on Earth. They are often exposed to large fluctuations in temperature and CO 2 concentrations in the ocean, which are expected to further change in the coming decades due to ocean acidification and warming resulting from rising atmospheric CO 2 levels. To decipher the effect of changing temperature and CO 2 levels on Synechococcus , six Synechococcus strains previously isolated from various coastal and open ocean sites were exposed to a matrix of three different temperatures (22 °C, 24 °C and 26 °C) and CO 2 levels (400 ppm, 600 ppm and 800 ppm). Thereafter, the specific growth rates, photophysiological parameters ( σ PSII and F v /F m ), C/N (mol/mol) ratios and the nitrogen stable isotopic composition (δ 15 N (‰)) of the strains were measured. Temperature was found to be a stronger driver of the changes in specific growth rates and photophysiology in the Synechococcus strains. Carbon-concentrating mechanisms (CCM) operational in these strains that shield the photosynthetic machinery from directly sensing ambient changes in CO 2 possibly played a major role in causing minimal changes in the specific growth rates under the varying CO 2 levels.

Keywords: picocyanobacteria; ocean acidification; Synechococcus; specific growth rate (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2071-1050/14/15/9508/pdf (application/pdf)
https://www.mdpi.com/2071-1050/14/15/9508/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:14:y:2022:i:15:p:9508-:d:879102

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jsusta:v:14:y:2022:i:15:p:9508-:d:879102