EconPapers    
Economics at your fingertips  
 

A Mass-Customization-Based Remanufacturing Scheme Design Method for Used Products

Wei Zhou and Chao Ke ()
Additional contact information
Wei Zhou: School of Environmental Science and Engineering, Hubei Polytechnic University, Huangshi 435003, China
Chao Ke: School of Automotive Technology and Services, Wuhan City Polytechnic, Wuhan 430070, China

Sustainability, 2022, vol. 14, issue 16, 1-22

Abstract: Remanufacturing scheme design (RSD) is an essential step in the restoration and upgrading of used products. However, the quantity of remanufactured products is growing rapidly, and customers have personalized demands for remanufactured products that lead to shorter design cycles. In addition, the used products are scrapped due to their own defects, such as performance failure and functional degradation, which correspond to the inherent remanufacturing demand (IRD) of used products. Faced with large quantities of used products, how to quickly develop reasonable remanufacturing schemes for satisfying customers’ individual demands and the IRD is an urgent problem to be solved. To address these issues, a mass customization-based RSD method is proposed. First, remanufacturing demand comprising customer demand and the IRD is analyzed to determine the RSD targets and remanufacturing types. Then, the RSD methods are intelligently selected based on the remanufacturing types, which include restorative remanufacturing, upgrade remanufacturing and hybrid remanufacturing, while the hybrid contains restorative remanufacturing and upgrade remanufacturing. Moreover, the restorative remanufacturing scheme is generated to satisfy the restorative remanufacturing targets based on reverse engineering (RE) and the tool contact point path section line (TCPPSL) method. After used products are restored, case-based reasoning (CBR) is used to retrieve the case that best matches the upgrade remanufacturing targets, while the grey relational analysis (GRA) algorithm is applied to calculate the similarity between cases. Finally, the feasibility of this method is verified by considering the RSD of a used lathe. The results indicated that the proposed approach can rapidly help designers to obtain remanufacturing solutions for satisfying the customer demand and IRD.

Keywords: mass customization; remanufacturing; intelligent; reverse engineering; case-based reasoning (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2071-1050/14/16/10059/pdf (application/pdf)
https://www.mdpi.com/2071-1050/14/16/10059/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:14:y:2022:i:16:p:10059-:d:887931

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jsusta:v:14:y:2022:i:16:p:10059-:d:887931